摘要
在群组决策中,针对专家给出的正互反判断矩阵提出一种专家赋权最优模型。在判断矩阵满足完全一致性的条件下,探讨了加权几何平均组合判断矩阵与加权几何平均组合向量所构成的特征矩阵的相容性。同时在相容性概念基础上,建立了基于相容性准则下的专家赋权方法的最优化模型,研究了模型的求解方法。最后进行了实例分析,结果表明提出的模型是合理可行的。
According to the reciprocal judgment matrices provided by experts, the optimal model of weigh ring experts is proposed in the group decision-making. Under the conditions of judgment matrices satisfying con sistency, the compatibility of judgment matrices is discussed between the weighting geometric averaging combi nation judgment matrix and the characteristic matrix formed by weighting geometric averaging combination vec tors. Based on the concept of compatibility, the optimal model of weighting experts is constructed under the cri terion of minimizing the compatibility of judgment matrices. The solving method for the model is also discussed Finally, an example is illustrated and the results show that the model is reasonable and feasible.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2008年第6期1065-1068,共4页
Systems Engineering and Electronics
基金
国家自然科学基金(70571001)
安徽省自然科学基金(070416245)
安徽教育厅省级教学研究项目(2007jyxm177)
安徽省优秀青年科技基金(08040106835)
安徽大学人才队伍建设项目
安徽大学创新团队项目资助课题
关键词
群组决策
相容性
专家赋权
组合判断矩阵
一致性
group decision-making
compatibility
weighting experts
combination judgment matrix
con-sistency