期刊文献+

一类具有非线性边界条件的p-Laplacian方程的多个解(英文)

Multiple Solutions for the p-Laplacian Equation with a Nonlinear Boundary Condition
下载PDF
导出
摘要 利用Ekeland变分原理和山路引理,一个三临界点定理分别得到一个关于一类p-Laplacian方程解的存在性的结果. Two existence theorems of multiple solutions for p-Laplacian equation with a nonlinear boundary condition are obtained by Ekeland Variational Principle and Mountain-Pass Theorem, and by a three-critical-point theory, respectively.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第6期15-20,共6页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(10771113) 南师范大学科技基金资助项目(413059).
关键词 P-LAPLACIAN方程 共振 非线性边界条件 临界点定理 p-Laplacian equation resonance nonlinear boundary condition critical point theory
  • 相关文献

参考文献11

  • 1[1]Ma Tofu,Ramost M,Sanchez L.Multiple Solutions for a Class of Nonlinear Boundary Value Problem Near Resonance:A Varitional Approach[J].Nonlinear Anal TMA,1997,30:3301-3311.
  • 2[2]Jiu Q S,Su J B.Existence and Multiplicity Results for Dirichht Problems with p-Laplaeian[J].Nonlinear Anal,2003,281:587 -601.
  • 3[3]Ma Tofu,Pelicer M L.Perturbations Near Resonance for the p-Laplacian in RN[J].Abstract and Applied Analysis,2002,7:323 -334.
  • 4[4]Liu S Q,Tang C L.Existence and Multiplicity of Solutions for a Class of Semilinear Elliptic Equations[J].J Math Anal Appl,2001,257:321-331.
  • 5[5]Fernandez J,Bonder,Rossi J D.Existence Results for the p-Laplacian with Nonlinear Boundary Conditions[J].J Math Anal Appl,2001,263:195-223.
  • 6[6]Brezis H,Nirenberg L.Remarks on Finding Critical Points[J].Comm Pure Appl Math,1991,44:939-963.
  • 7[7]Martinez S,Rossi J D.Weak Solutions for the p-Laplacian with a Nonlinear Boundary Condition at Resonance[J].Elec-tron J Diff Equ,2003,37:1 -14.
  • 8[8]Rabinowitz P H.Minimax Methods in Critical Point Theory with Applications to Differential Equations[M].CBMS Reg Conf Ser In Math,Amer Math Soc,Providence RI,1986,65:1 -100.
  • 9[9]Mawhin J,Willem M.Critical Point Theory and Hamiltonian Systems[M].New York:Springer-Verlag,1989.
  • 10[10]Liu J Q,Su J B.Remark on Multiple Nontrivial Solutions for Quasi-Linear Resonant Problems[J].J Math Anal Appl,2001,258:209 -222.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部