摘要
利用Bilu,Hanrot和Voutier关于Lucas数本原素除子存在性的深刻结果,证明了指数丢番图方程x2+3m=yn仅有正整数解(x,y,m,n)=(46,13,4,3)适合n>2且gcd(x,y)=1。
By applying the deep theorem of Bilu,Hanrot and Voutier about the existence of primitive divisors of I.ucas numbers,we prove that the exponential diophantine equation x^2+3^m=y^n has only positive integer solution (x,y,rn ,n) = (46,13,4,3) with n〉2 and gcd= (x,y) =1.
出处
《佛山科学技术学院学报(自然科学版)》
CAS
2008年第3期3-5,共3页
Journal of Foshan University(Natural Science Edition)
基金
广东省自然科学基金资助项目(04009801)