期刊文献+

基于隶属度模糊最小二乘支持向量机的工序能力预测 被引量:3

Intelligent Prediction for Process Capability Based on FLS-SVM
下载PDF
导出
摘要 提出了一种基于隶属度模糊最小二乘支持向量机(FLS-SVM)的时间序列预测新方法。一方面,该方法较好地解决了小样本学习问题,避免了人工神经网等智能方法在对小批量生产工序能力进行预测时所表现出来的过学习、泛化能力弱等缺点;另一方面,由于对于历史数据实行的重近轻远的原则,使得该方法预测精度高且容易实现。实验表明,该方法具有很好的有效性与实用性。 A new time series prediction method was put forward,based on fuzzy least square support vector machine(FLS-SVM).On the one hand,it can solve the small-batch learning better and avoid the disadvantages,such as over-training,weak normalization capability,ect.,of artificial neural networks prediction.On the other hand,this proposed method is more accurate and can be realized easily because it sets larger weight on the nearer sample but smaller weight on the farther.As a result,the prediction effect shows the effectiveness and practicability of the mode.
出处 《中国机械工程》 CAS CSCD 北大核心 2008年第13期1561-1564,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(70672096)
关键词 KFRP防护背板的钻孔机理及试验研究工序能力 最小二乘支持向量机 时间序列 智能预测 process capability least square support vector machine time series intelligent prediction
  • 相关文献

参考文献10

二级参考文献28

  • 1白建社,盛戈皞,江秀臣,曾奕.基于移动时间窗的直流局部放电特征提取方法[J].电力系统自动化,2005,29(14):55-59. 被引量:13
  • 2韩捷,旋转机械故障机理及诊断技术,1997年
  • 3张琳娜,精度设计与质量控制基础,1996年
  • 4黄仁,机械加工过程的状况监测与故障诊断,1991年
  • 5邓聚龙,灰色预测与决策,1987年
  • 6Chen C H,Maximum Entropy Analysis Methods for Signal Recognition,1982年
  • 7Kim, Kyoung-jae. Financial time series forecasting using support vector machines[J]. Neurocomputing, 2003, 307-319.
  • 8Han Liu, Ding Liu, Gang Zheng et al. Research on natural gas load forecasting based on support vector regression. In: Proc. of WCICA'2004.2004:3591-3595.
  • 9Mohandes M, Halawani T, Rehman S et al. Support vector machines for wind speed prediction[J]. Renewable Energy, 2004, 939-947.
  • 10Vapnik V,Golowich S,Smola A. Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T(eds). Neural Information Processing System, MIT Press, 1997, 9.

共引文献33

同被引文献29

  • 1丁恰,卢建刚,钱玉妹,张剑,廖怀庆.一种实用的超短期负荷预测曲线外推方法[J].电力系统自动化,2004,28(16):83-85. 被引量:38
  • 2路轶,王民昆.基于短期负荷预测的超短期负荷预测曲线外推法[J].电力系统自动化,2006,30(16):102-104. 被引量:22
  • 3谢宏,魏江平,刘鹤立.短期负荷预测中支持向量机模型的参数选取和优化方法[J].中国电机工程学报,2006,26(22):17-22. 被引量:93
  • 4Wiktor C,Mo-Shing Chen.Very short-term load forecasting using artificial neural networks[J].IEEE Trans on Power Systems,2000,15(1):263-268.
  • 5Chen Dingguo,York M.Neural network based very short term load prediction[C].// transmission and distribution conference and exposition.Latin(America):2008:1-9.
  • 6Vapnik V.An overview of statistical learning theory[J].IEEE Trans on Neural Networks,1999,10(5):988-999.
  • 7Platt J.Fast training of support vector machines using sequential minimum optimization[C].//Advance in Kernel Methods-support Vector Learning.Cambridge:1999:185-208.
  • 8Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Network Letters,1999,9(3):293-300.
  • 9Suykens J A K,van Gestel T,de Brabanter J.Least squares support vector machines[M].Singapore:World Scientific,2002.
  • 10Cawley G C,Talbot N L C.Preventing over-fitting during model selection via Bayesian regularization of the hyper-parameters[J].Machine Learning Research,2007,8(5):841-861.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部