期刊文献+

A Novel Statistical Delay Model Based on the Birnbaum-Saunders Distribution for RLC Interconnects in 90nm Technologies

一种基于Birnbaum-Saunders分布的新型互连时延统计模型(英文)
下载PDF
导出
摘要 For performance optimization such as placement,interconnect synthesis,and routing, an efficient and accurate interconnect delay metric is critical,even in design tools development like design for yield (DFY) and design for manufacture (DFM). In the nanometer regime, the recently proposed delay models for RLC interconnects based on statistical probability density function (PDF)interpretation such as PRIMO,H-gamma,WED and RLD bridge the gap between accuracy and efficiency. However, these models always require table look-up when operating. In this paper, a novel delay model based on the Birnbaum-Saunders distribution (BSD) is presented. BSD can accomplish interconnect delay estimation fast and accurately without table look-up operations. Furthermore, it only needs the first two moments to match. Experimental results in 90nm technology show that BSD is robust, easy to implement,efficient,and accurate. 基于统计概率分布的互连时延模型具有效率高、准确性好的特点,但此类方法往往包含一些查表运算.本文提出了一种基于Birnbaum-Saunders分布的互连线时延模型,避免了查表运算,且仅需要采用前两个瞬态,计算简单,准确性较好,并提出了一种精度修正算法,使该方法具有更好的适应性.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第7期1313-1317,共5页 半导体学报(英文版)
关键词 delay model INTERCONNECT MOMENT probability distribution function 时延模型 互连线 瞬态 统计概率分布
  • 相关文献

参考文献1

二级参考文献8

  • 1Devgan Anirudh, O'Brien Peter R. Realizable reduction for RC interconnect circuits[A]. In: Proceedings of the 1999 IEEE/ACM International Conference on Computer-Aided Design, San Jose, California, 1999. 204~207.?A?A
  • 2Sapatnekar S S. RC interconnect optimization under the Elmore delay model[A]. In: Proceedings of the 1994 IEEE/ACM International Conference on Computer-Aided Design, San Jose, California, 1994. 387~391.
  • 3Alpert Charles J, Devgan Anirudh, Kashyap Chandramouli V. A two moment RC delay metrics for performance optimization[A]. In: Proceedings of the 2000 International Symposium on Physical Design, San Diego, California, 2000. 69~74.
  • 4Kay R, Pileggi L. PRIMO: Probability interpretation of moments for delay calculation[A]. In: Proceedings of the 35th ACM/IEEE Design Automation Conference, San Francisco, California, 1998. 463~468.
  • 5Lin T, Acar E, Pileggi L. H-gamma: An RC delay metric based on a gamma distribution approximation to the homogeneous response[A]. In: Proceedings of ACM/IEEE International Conference on Computer-Aided Design, Doublettree Hotel, San Jose, California, 1998. 19~25.
  • 6Liu Frank, Kashyap Chandramouli, Alpert Charles J. A delay metric for RC circuits based on the Weibull distribution[A]. In: Proceedings of the IEEE/ACM International Conference on Computer Aided Design, San Jose, California, 2002. 620~624.
  • 7Bain L J, Engelhard M. Introduction to Probability and Mathematical Statistics[M]. Belmont: Duxbury Press, 1992.
  • 8Eric W Weisstein. Wolfram Research[OL]. http://mathworld.wolfram.com.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部