期刊文献+

基于DEPSO-RBFNN的变压器表面温度预测模型 被引量:9

Prediction of Shell Temperature for Transformers Based on DEPSO-RBFNN
下载PDF
导出
摘要 提出一种基于差异进化算法(DE)和粒子群优化算法(PSO)的新型混合进化算法DEPSO,以及基于DEPSO的径向基函数神经网络(RBFNN)模型,并应用于预测SF6气体绝缘变压器表面温度。该模型用DEPSO算法训练RBFNN隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对某变电站SF6气体绝缘变压器的表面温度预测结果表明:与BP网络、基于进化规划(EP)、PSO的RBFNN相比,这种建模方法具有更高的预测精度。 A novel radial basis function neural network (RBFNN) model based on a hybrid learning algorithm differential evolution and particle swarm optimization (DEPSO) is proposed in this paper to predict the shell temperature for SF6-insulated transformers. The DEPSO automatically adjusts the number and positions of hidden layer RBF centers o The weights of output layer are decided by the recursive least squares algorithm. The proposed DEPSO-RBFNN model is trained and tested based on the field data collected from a SF6-insulated transformer. The test results reveal that the DEPSO- RBFNN possesses far superior forecast precision than BP neural network (BPNN), EP-RBFNN and PSO- RBFNN.
出处 《电工技术学报》 EI CSCD 北大核心 2008年第6期37-43,共7页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(50677062)
关键词 SF6气体绝缘变压器 表面温度预测 RBF神经网络 粒子群优化算法 差异进化算法 SF6-insulated transformers, prediction of shell temperature, radial basis function neural network, particle swarm optimization, differential evolution
  • 相关文献

参考文献15

  • 1Kemp I J. Partial discharge plant-monitoring technology: present and future developments[J]. IEE Proceedings-Science, Measurement and Technology, 1995, 142(1): 4-10.
  • 2Alegi G L, Black W Z. Real-time thermal model for an oil-immersed, forced-air cooled transformer[J]. IEEE Transaction on Power Delivery, 1990, 5(2): 991-999.
  • 3IEEE Standard C57.91-1995. IEEE Guide for loading mineral-oil immersed transformer[S]. New York: Institute of Electrical and Electronic Engineers, Inc, 1995.
  • 4He Q, Si J, Tylavsky D J. Prediction of top-oil temperature for transformers using neural network[J]. IEEE Transaction on Power Delivery, 2001, 15(4): 1205-1211.
  • 5王红宇,苏鹏声,王祥珩,赵斌,龚东武.油浸式大型电力变压器表面温度预测模型[J].清华大学学报(自然科学版),2005,45(4):569-572. 被引量:12
  • 6Shoureshi R, Norick T, Linder D. Sensor fusion and complex data analysis for predictive maintenance[C]. Processings of the 36th Hawaii International Conference on System Sciences, 2003, 2: 63-69.
  • 7Narenda K K, Parthasarathy K. Identification and control of dynamical systems using neural networks[J]. IEEE Transaction on Neural Networks, 1990, 1(1): 4-27.
  • 8Juang C F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms[J]. IEEE Transaction on Fuzzy System, 2002, 10(2): 155-170.
  • 9Tseng C S, Chen B S, Uang H J. Fuzzy tracking control design for nonlinear dynamical systems via T-S fuzzy model[J]. IEEE Transaction on Fuzzy System, 2001, 9(3):381-392.
  • 10Park J, Sandberg I W, Universal approximation using radial basis function networks[J], Neural Computation, 1990, 3(2):246-257

二级参考文献34

  • 1[1]Koziel S, Michalewicz Z. Evolutionary algorithms, homomorphous mappings and constrained parameter optimization[J]. Evolutionary Computation, 1999, 7 (1): 19-44.
  • 2[2]Whitley D. An overview of evolutionary algorithms: Practical issues and common pitfalls[J]. Information and Software Technology, 2001, 43(14): 817-831.
  • 3[3]Fogel L J, Owens A J, Walsh M J. Artificial Intelligence Through Simulated Evolution[M]. Chichester: John Wiley, 1996.
  • 4[4]Rechenberg I. Evolutionsstrategie: Optimierung Technischer Systems nach Prinzipien der Biologischen Evolution[M]. Stuttgart: Frommann-Holzboog Verlag, 1973.
  • 5[5]Holland J H. Adaptation in Natural and Artificial Systems[M].Ann Arbor:University of Michigan Press, 1975.
  • 6[6]De Jong K A. The analysis of the behavior of a class of genetic adaptive systems[D]. Ann Arbor: University of Michigan, 1975.
  • 7[7]Storn R. Differential evolution design of an IIR-filter [A]. IEEE Int Conf on Evolutionary Computation[C]. Nagoya,1996. 268-273.
  • 8[8]Storn R, Price K. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces[J]. J of Global Optimization, 1997, 11(4): 341-359.
  • 9[9]Pahner U, Hameyer K. Adaptive coupling of differential evolution and multiquadrics approxima-tion for the tuning of the optimization process [J]. IEEE Trans on Magnetics, 2000, 36(4): 1047-1051.
  • 10[10]Cheng S L, Hwang C. Optimal approximation of linear systems by a differential evolution algorithm [J]. IEEE Trans on Systems, Man and Cybernetics - Part A, 2001, 31(6): 698-707.

共引文献92

同被引文献151

引证文献9

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部