摘要
提出一种基于差异进化算法(DE)和粒子群优化算法(PSO)的新型混合进化算法DEPSO,以及基于DEPSO的径向基函数神经网络(RBFNN)模型,并应用于预测SF6气体绝缘变压器表面温度。该模型用DEPSO算法训练RBFNN隐层中心的数量和位置,并采用递推最小二乘法确定网络输出层的权值。对某变电站SF6气体绝缘变压器的表面温度预测结果表明:与BP网络、基于进化规划(EP)、PSO的RBFNN相比,这种建模方法具有更高的预测精度。
A novel radial basis function neural network (RBFNN) model based on a hybrid learning algorithm differential evolution and particle swarm optimization (DEPSO) is proposed in this paper to predict the shell temperature for SF6-insulated transformers. The DEPSO automatically adjusts the number and positions of hidden layer RBF centers o The weights of output layer are decided by the recursive least squares algorithm. The proposed DEPSO-RBFNN model is trained and tested based on the field data collected from a SF6-insulated transformer. The test results reveal that the DEPSO- RBFNN possesses far superior forecast precision than BP neural network (BPNN), EP-RBFNN and PSO- RBFNN.
出处
《电工技术学报》
EI
CSCD
北大核心
2008年第6期37-43,共7页
Transactions of China Electrotechnical Society
基金
国家自然科学基金资助项目(50677062)
关键词
SF6气体绝缘变压器
表面温度预测
RBF神经网络
粒子群优化算法
差异进化算法
SF6-insulated transformers, prediction of shell temperature, radial basis function neural network, particle swarm optimization, differential evolution