期刊文献+

随机保费风险模型下的平均折现罚金函数(英文) 被引量:10

On the Expected Discounted Penalty Function Associated with the Time of Ruin for a Risk Model with Random Income
下载PDF
导出
摘要 本文研究随机保费风险模型下与破产时刻相关的平均折现罚金函数.与经典的Cramér-Lundberg模型相比这里的保费过程不再是时间的线性函数,而是一个与理赔独立的复合Possion过程.我们得到了罚金函数所满足的积分方程,它提供了一种研究破产量的统一方法.利用该积分方程我们得到了破产时刻,破产时赤字,破产前瞬时盈余的Laplace变换;并在指数分布的特殊情况下求出了他们的显著表达式,推广了Boikov(2003)的结论. This paper studies the expected discounted penalty function associated with the time of ruin for a risk model with stochastic premium. The premium process is no longer a linear function of time in contrast with the classical Cramér-Lundberg model. The aggregate premiums constitute a compound Poisson process which is also independent of the claim process. Integral equation for the penalty function is derived, which provides a unified treatment to the ruin quantities. Applications of the integral equation are given to the Laplace transform of the time of ruin, the deficit at ruin, the surplus immediately before ruin occurs. In some special cases with exponential distributions, closed form expressions for these quantities are obtained, which generalize some known results about the problems of ruin in Boikov (2003).
出处 《应用概率统计》 CSCD 北大核心 2008年第3期319-326,共8页 Chinese Journal of Applied Probability and Statistics
基金 a grant from National Natural Science Foundation of China (10671072) Doctoral Program Foundation of the Ministry of Education of China (20060269016) the National Basic Research Program (973 Program,2007CB814904) of China the NSF of Anhui Educational Bureau (KJ2008B243)
关键词 随机保费 积分方程 罚金函数 破产时刻 破产时赤字 破产前瞬时盈余 Stochastic premium, integral equation, penalty function, the time of ruin, the deficit at ruin, the surplus immediately before ruin occurs
  • 相关文献

参考文献9

  • 1Boikov, A.V., The Cramer-Lundberg model with stochasitic premium process, Theory of Probability and its Applications, 47(2003), 489-493.
  • 2Cai, J., Dickson, D.C.M., On the expected discounted penalty funtion at ruin of a surplus process with interest, Insurance: Mathematic and Economics, 30(2002), 389-404.
  • 3Cai, J,, Ruin probabilities and penalty functions with stochastic rates of interest, Stochastic Processes and their Applications, 112(2004), 53-78.
  • 4Dickson, D.C.M., On the distribution of the surplus prior to ruin, Insurance: Mathematics and Economics, 11(1992), 191-207.
  • 5Dufresne, F., Gerber, H.U., The surpluses immediately before and at ruin, and the amount of the claim causing ruin, Insurance: Mathematics and Economics, 7(1988), 193-199.
  • 6Lin, X., Willmot, G.E., Analysis of a defective renewal equation axising in ruin theory, Insurance: Mathematics and Economics, 25(1999), 63-84.
  • 7Gerber, H.U., Shiu, E.S.W., The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: Mathematics and Economics, 21(1997), 129-137.
  • 8Gerber, H.U., Shiu, E.S.W., On the Time Value of Ruin, North America Acturial Journal, 2(1998), 48-78.
  • 9Gerber, H.U., Goovaerts, M.J., Kaas, R., On the probability and severity of ruin, Astin Bulletin, 17(1987), 151-163.

同被引文献29

  • 1方世祖,罗建华.双复合Poisson风险模型[J].纯粹数学与应用数学,2006,22(2):271-278. 被引量:37
  • 2蔡高玉,耿显民.一类随机保费率下的风险模型[J].应用数学与计算数学学报,2007,21(1):27-33. 被引量:13
  • 3Lin, X.S., Willmot, G.E. and Drekic, S., The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function, Insurance: Mathematics and Economics, 33(3) (2003), 551-566.
  • 4Yuen, K.C., Wang, G. and Li, W.K., The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier, Insurance: Mathematics and Economics, 40(1)(2007), 104-112.
  • 5De Finetti, B., Su un'impostazione alternativa dell teoria colletiva del rischio, Transactions of the XV Intervnational Congress of Actuaries, 2(1)(1957), 433-443.
  • 6Dickson, D.C.M. and Waters, H.R., Some optimal dividends problems, ASTIN Bulletin, 34(1)(2004), 49-74.
  • 7Gerber, H.U., Lin, X.S. and Yang, H., A note on the dividends-penalty identity and the optimal dividend barrier, ASTIN Bulletin, 36(2)(2006), 489-503.
  • 8Gerber, H.U. and Shiu, E.S.W., On optimal dividend strategies in the compound Poisson model, North American Actuarial Journal, 10(2)(2006), 76-93.
  • 9Boikov, A.V., The Cramer-Lundberg model with stochastic premium process, Theory of Probability and its Applications, 47(3)(2003), 489-493.
  • 10X. Sheldon Lin,Gordon E. Willmot,Steve Drekic.The classical risk model with a constant dividend barrier: analysis of the Gerber–Shiu discounted penalty function[J]. Insurance Mathematics and Economics . 2003 (3)

引证文献10

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部