期刊文献+

个性化服务中隐私保护技术综述 被引量:3

Survey of privacy preserving in personalization service
下载PDF
导出
摘要 介绍了个性化服务中隐私保护的特点,总结了当前个性化服务中隐私保护技术的相关标准和发展现状,并分析了个性化服务中进行隐私保护所面临的主要问题和挑战,最后对个性化服务中隐私保护技术的发展方向进行了展望。 This paper introduced privacy protection features of personalization service, summarized the current privacy protec- tion technology and the development of standards related to the personalization service, and analyzed the major problems and challenges of the privacy protection development in personalization service. Finally,it prospected the development direction of the privacy protection technology in personalization service.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期1932-1935,1939,共5页 Application Research of Computers
基金 国家"863"计划资助项目(2002AA113070)
关键词 WEB挖掘 个性化服务 隐私保护 协同过滤 Web mining personalization service privacy preserving collaborative filtering
  • 相关文献

参考文献27

  • 1曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 2AGRAWAL R. Data mining: crossing the Chasm [ C]//Proc of the 5th Int'l Conference on Knowledge Discovery in Databases and Data Minning. San Diego, California: [ s. n. ] ,1999.
  • 3VERYKIOS V S,BERTINO E, FOVINO I N,et al. State-of-the-art in privacy preserving data mining[ C ]//Proc of ACM SIGMOD Record. New York : ACM Press, 2004:50-57.
  • 4Platform for privacy preferences (P3P) project [ EB/OL]. http :// www . w3. org/P3P/.
  • 5Enterprise privacy authorization language (EPAL 1.2 ) [ EB /OL]. http ://www. w3. org/Submissiort/EPAL/.
  • 6SWEENEY L. K-Anonymity:a model for protecting privacy[ J]. Int'l Journal on Uncertainty, Fuzziness and Knowledge-based Systems ,2002,10( 5 ) :557-570.
  • 7AGRAWAL R, IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases [ C ]//Proc of ACM Sigmod Conference of Management of Data. New York:ACM Press, 1993: 207 -216.
  • 8RIZVI S J, HARITSA J R. Maintaining data privacy in association rule mining [ C ]//Proc of the 28th VLDB Conference. Hong Kong: Morgan Kaufmann Publishers, 2002:682-693.
  • 9AGRAWAL S, KRISHNAN V, HARITSA J R. On addressing efficiency concerns in privacy-preserving mining [ C ]//Proc of the 9th Int' 1 Conference on Database Systems for Advanced Applications. Jeju Island : Springer-Verlag,2004 : 113-124.
  • 10EVFIMIEVSKI A. Randomization in privacy preserving data mining [J]. SIGKDD Explorations,2002,4(2) :43-48.

二级参考文献41

  • 1Han, E.H., Boley, D., Gini, M., et al. WebACE: a web agent for document c ategorization and exploration. In: Sycara, K.P., Wooldridge, M., eds. Proceeding s of the 2nd International Conference on Autonomous Agents. New York: ACM Press, 1998. 408~415.
  • 2Schwab, I., Pohl, W., Koychev, I. Learning to recommend from positive evi dence. In: Riecken, D., Benyon, D., Lieberman, H., eds. Proceedings of the Inter national Conference on Intelligent User Interfaces. New York: ACM Press, 2000. 2 41~247.
  • 3Pretschner, A. Ontology based personalized search [MS. Thesis]. Lawrence, KS: University of Kansas, 1999.
  • 4Adomavicius, G., Tuzhilin, A. User profiling in personalization applicati ons through rule discovery and validation. In: Lee, D., Schkolnick, M., Provost, F., et al., eds. Proceedings of the 5th International Conference on Data Mining and Knowledge Discovery. New York: ACM Press, 1999. 377~381.
  • 5Balabanovic, M., Shoham, Y. Fab: content-based, collaborative recommendat ion. Communications of the ACM, 1997,40(3):66~72.
  • 6Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Application of dimension ality reduction in recommender system--a case study. In: Jhingran, A., Mason, J.M., Tygar, D., eds. Proceedings of the ACM WebKDD Workshop on Web Mining for E -Commerce. New York: ACM Press, 2000.
  • 7Sarwar, B.M., Karypis, G., Konstan, J.A., et al. Analysis of recommendati on algorithms for e-commerce. In: Proceedings of the ACM Conference on Electroni c Commerce. New York: ACM Press, 2000. 158~167.
  • 8Breese, J.S., Heckerman, D., Kadie, C. Empirical analysis of predictive a lgorithms for collaborative filtering. In: Cooper, G.F., Moral, S., eds. Proceed ings of the 14th Conference on Uncertainty in Artificial Intelligence. San Franc isco: Morgan Kaufmann Publishers, 1998. 43~52.
  • 9Aggarwal, C.C., Wolf, J.L., Wu, K., et al. Horting hatches an egg: a new raph-theoretic approach to collaborative filtering. In: Chaudhuri, S., Madigan, D., Fayyad, U., eds. Proceedings of the ACM International Conference on Knowledg e Discovery and Data Mining. New York: ACM Press, 1999. 201~212.
  • 10Sarwar, B., Karypis, G., Konstan, J., et al. Item-Based collaborative fil tering recommendation algorithms. In: Shen, V.Y., Saito, N., eds. Proceedings of the 10th International World Wide Web Conference (WWW10). 2001. 285~295.

共引文献393

同被引文献49

引证文献3

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部