期刊文献+

一种新的模糊支持向量机多分类算法 被引量:8

New multiclassification algorithm based on fuzzy support vector machines
下载PDF
导出
摘要 在模糊多分类问题中,由于训练样本在训练过程中所起的作用不同,对所有数据包括异常数据赋予一个隶属度。针对模糊支持向量机(fuzzy support vectormachines,FSVM)的第一种形式,引入类中心的概念,结合一对多1-a-a(one-against-all)组合分类方法,提出了一种基于一对多组合的模糊支持向量机多分类算法,并与1-a-1(one-against-one)组合和1-a-a组合的分类算法比较。数值实验表明,该算法是有效的,有较高的分类准确率,有更好的泛化能力。 In the fuzzy multiclassification problem, gave a degree of membership to all the data including abnormal data as the training samples played different affections in the training procession. Facing to the first form of fuzzy support vector machines, used the concept of the class center. Considered with the one-against-all association assorting method,put out a new fuzzy support vector machines multiclassification model based on one-against-all association, and compared with one-against-one and one-against-all association assorting method. The numerical test has improved that the algorithm is effective, and it has higher accurate rate of classification, also better ability of generalization.
出处 《计算机应用研究》 CSCD 北大核心 2008年第7期2041-2042,共2页 Application Research of Computers
基金 山东省自然科学基金资助项目(2007ZRB019FK)
关键词 支持向量机 模糊支持向量机 一对多组合 隶属函数 多分类算法 support vector machines (SVM) fuzzy support vector machines (FSVM) one-against-all membership function multiclassification algorithm
  • 相关文献

参考文献12

  • 1LIN Chun-fu, WANG Sheng-de. Fuzzy support vector machines [ J ]. IEEE Trans on Neural Networks ,2002,13 ( 2 ) :464-471.
  • 2INOUE T,ABE S. Fuzzy support vector machines for patter classification [ C ]//Proc of International Joint Conference on Neural Networks. Washington DC : [ s. n. ] ,2001 : 1449-1455.
  • 3TSUJINISHI D, ABE S. Fuzzy least squares support vector machines for muhiclass problems[J]. Noural Notworks,2003,16(5-6) :758- 792.
  • 4HUANG H P, LIU Y H. Fuzzy support vector machines for pattern recognition and data mining [ J ]. International Journal of Fuzzy Systems,2002,4 ( 3 ) : 826 - 835.
  • 5ABE S. Analysis of multi-class support vector machines[ C ]//Proc of International Conference on Computational Intelligence for Modeling Control and Automation. 2003:385-396.
  • 6HSU C W, LIN C J. A comparison of methods for multi-class support vector machines [ J ]. IEEE Trans on Neural Networks, 2002,13 (2) :415-425.
  • 7PLATT J C, CRISTIANINI N. Large margin DAG' s for multi-class classification [ C]//Proc of Advances in Neural Information Processing Systems. Cambridge : MIT Press ,2002:547-553.
  • 8KIJSIRIKUL B, USSIVAKUL N. Multi-class support vector machines using adaptive directed acyclic graph [ C ]//Proc of International Joint Conference on Neural Networks. 2002:980-985.
  • 9Cristanini N,Shawe-Taylor J.支持向量机导论[M].李国正,王猛,曾华军译.北京:电子工业出版社,2004.
  • 10UCI MLG. UCI common dataset[ DB/OL]. (2005-06-01)[2007-02- 16 ]. http ://mlearn. ics. uci. edu/MLRepository. html.

二级参考文献3

共引文献15

同被引文献91

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部