摘要
复数域上n阶方阵A称为行对称的,若JA=AJ,其中J=0 0…0 10 0…1 00 1…0 01 0…0 0.定义了行对称阵的次特征值、次特征向量,并研究了该类矩阵的Hermite性、酉性和正规性.
A square matrix A of order n over the complex field is called row-symmetric, if JA =A J, where J ={0 0…0 1 0 0…1 0 0 1…0 0 1 0…0 0.} In this paper, sub-characteristic value and sub-characteristic vector are defined for row-symmetric matrices and the Hermitian, unitary and normal properties of the row-symmetric matrices are discussed.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第4期390-392,共3页
Journal of Sichuan Normal University(Natural Science)
基金
重庆市自然科学基金(CSTC
2006EA005)资助项目