期刊文献+

Lagrange插补多项式的Bernstein求和 被引量:1

ON BERNSTEIN ROGOSINSKI SUMMATION OF INTERPOLATION POLYNOMIALS ON UNIT CIRCLE
下载PDF
导出
摘要 本文研究了在结点系{z_k^(n)=e^(((2k-1)/n)ni)}_(k=1)~n 上关于函数类 A 的 Lagrange 插补多项式的白恩斯坦—罗格辛斯基求和 U_n(f,z)=1/2{Ln(f,ze^(((s)/n)i)+Ln(f,ze^((-(s)/n)i)}在单位闭圆上的发散性与内闭一致收敛性。 Letf ∈A denote f(z)analytic in |z|<1 and continuous on |z|≦1,and z_k=z_k^(n) =e^(iok).O_k=(2k-1)/nπ.k=1.2.…n. n=1.2.…The corresponding lagrange interpolation polynomial is Ln(f.z)=sum from k=1 to nf(z_N)L_x(z) where L_k(z)=w(z)/(z-z_k)w′(z_k).w(z)=multiply from k=1 to n(z-z_k) Expond Ln(f.z)in the following form: Ln(f.z)=sum from (?) to(n-1)A_(?)(f)z_(?),A(?)(f)=sum from l=1 ton z^jf(z_k) Define Un(f.z)=1/2{Ln(f.zen/n(?))+Ln(f.ze-n/n(?)} We have Theoreml Supposef∈A.Then U_n(f.z)converges uniformly tof(z)on arbitrary closed domain in|z|<1. Theorem2 Supposef∈A and{p_k^(n)}R=0.Satisfy the condition that Limp_k^(n)=1. Then Vn(f.z)=sum from j=0 to(?)p_(?)^(n)A_(?)(f)z^J converges uniformly tof(z) on arbitrary closed doman in|z|<1. Theorem3 There exists a function f∈A.such that Lim Un(f.-1)=∞
机构地区 郑州大学 黄河大学
出处 《河南科学》 1990年第1期1-9,共9页 Henan Science
关键词 LAGRANGE 插补多项式 求和 Function class A(analyric in |Z|<l and conrinuons on |Z|<1)Lagrange interpolation Bernsteim-Rogosinski Summation divergence converge unformly
  • 引文网络
  • 相关文献

参考文献1

  • 1沈燮昌,钟乐凡.Lagrange插值多项式在复平面上的平均逼近阶[J]科学通报,1988(11).

引证文献1

相关主题

;
使用帮助 返回顶部