期刊文献+

分布式概念格的属性约简研究 被引量:8

Distributive Reduction of Attributes in Concept Lattice
下载PDF
导出
摘要 概念格的属性约简是形式化概念分析理论的重要研究内容之一.传统的格属性约简方法主要是针对非分布式环境下单个形式背景的,而随着数据分布存储和处理的广泛应用,研究基于分布式环境下概念格的属性约简具有重要的意义.为此,提出属性的超集和确定集的概念,刻画了形式背景中不同类型属性的局部特征与全局特征,推导出属性约简的判定定理;在此基础上,给出计算分布式环境下概念格属性约简的ADSCL和DRCL算法.ADSCL算法用于计算属性的超集和最小确定集,这些约简信息将作为DRCL算法的输入,以计算得到全局形式背景的约简.理论分析和实验结果表明,该算法是有效可行的. Attribute reduction is one of the key problems in formal concept analysis.A few approaches have been proposed but they are only applicable to formal context in a non-distributed environment.With the wide application of distributed data storage and processing,it is necessary to develop a method to adapt to this environment.To address this problem,the characterizations of different kinds of attributes are provided from the point of view of global context and local context.The notion of super set and consistent set are introduced to determine whether an attribute is reducible in a global context.The determinant theorem of attribute reductions is derived based on core attributes and dispensable attributes.Based on these results,two algorithms are designed to compute attribute reductions of context in a distributed environment.The first algorithm,DRCL,determines attribute reductions of global context.The local reductions can be computed by using the existing approaches.The second algorithm,ADSCL,determines the super sets and all minimal consistent sets for the attributes given by a context.This information is required by the first algorithm.Theory analysis and experimental results show the feasibility and effectiveness of the two algorithms.
作者 杨彬 徐宝文
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1169-1176,共8页 Journal of Computer Research and Development
基金 国家杰出青年科学基金项目(60425206) 国家自然科学基金项目(60373066) 江苏省自然科学基金项目(BK2006094)
关键词 概念格 形式背景 分布式环境 属性约简 属性特征化 concept lattice formal context distributed environment attribute reduction attribute characterization
  • 相关文献

参考文献12

  • 1Ganter B, Wille R. Formal Concept Analysis, Mathematical Foundations[M]. Berlin: Springer, 1999
  • 2Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts [C] //Rival I ed. Ordered Sets. Dordrecht-Boston: Reidel, 1982:445-470
  • 3Yao Y Y. A comparative study of formal concept analysis and rough set theory in data analysis [G] //Proc of the Rough Sets and Current Trends in Computing, LNCS 3066. Berlin: Springer, 2004:59-68
  • 4Maddouri M. Towards a machine learning approach based on incremental concept formation [ J]. Intelligent Data Analysis, 2004, 8(3): 267-280
  • 5Burmeister P. Formal concept analysis with Conlmp: Introduction to the basic features [EB/OL]. [2003-01-18]. http:// www. mathematik. tu darmstadt.de/-burmeister/ ComImpIntro. ps
  • 6张凯,胡运发,王瑜.基于互关联后继树的概念格构造算法[J].计算机研究与发展,2004,41(9):1493-1499. 被引量:15
  • 7Kent R. Rough concept analysis: A synthesis of rough sets and formal concept analysis [J]. Foundation Information, 1996, 2(27): 169-181
  • 8张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 9Yao Y Y, Chen Y H. Rough set approximations in formal concept analysis [G]//LNCS 4100. Berlin: Springer, 2006: 285-305
  • 10Li H R, Zhang W X, Wang H. Classification and reduction of attributes in concept lattices [C] //Proc of IEEE Int'l Conf on Granular Computing (GrC'06). Los Alamitos: IEEE Computer Society, 2006: 142-147

二级参考文献24

  • 1R Wille. Concept lattices and conceptual knowledge systems. Computers and Mathematics with Applications, 1992, 23: 493~515
  • 2L Nourine, O Raynaud. A fast algorithm for building lattices. Information Processing Letters, 1999, 71(1): 199~204
  • 3R Godin, R Missaoui, H Alaoui. Incremental concept formation algorithms based on Galois(concept) lattices. Computational Intelligence, 1995, 11(2): 246~267
  • 4B Ganter, R Wille. Formal Concept Analysis Mathematical Foundations. New York: Springer-Verlag, 1999
  • 5G Stumme, R Taouil, Y Bastide, et al. Fast computation of concept lattices using data mining techniques. In: Proc of the 7th Int'l Workshop on Knowledge Representation Meets Databases. Berlin: Technical University of Aachen, 2000. 129~139
  • 6胡运发.互关联后继树--一种新型全文数据库数学模型.技术报告: TR02-031[R].复旦大学计算机与信息技术系,2002..
  • 7Oosthuizen G D. The Application of Concept Lattice to Machine Learning. Technical Report, University of Pretoria, South Africa, 1996.
  • 8Ho T B. Incremental conceptual clustering in the framework of Galois lattice. In: Lu H, Motoda H, Liu H, eds. KDD: Techniques and Applications. Singapore: World Scientific, 1997. 49~64.
  • 9Kent R E. Bowman C M. Digital Libraries, Conceptual Knowledge Systems and the Nebula Interface. Technical Report, University of Arkansas, 1995.
  • 10Corbett D, Burrow A L. Knowledge reuse in SEED exploiting conceptual graphs. In: International Conference on Conceptual Graphs (ICCS'96). Sydney, 1996. University of New South Wales, 1996. 56~60.

共引文献205

同被引文献104

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部