期刊文献+

基于迭代切距离原型学习算法的步态识别 被引量:6

An Iterative Gait Prototype Learning Algorithm Based on Tangent Distance
下载PDF
导出
摘要 作为唯一远程生物认证技术,步态识别一方面越来越受到人们的重视,提出了很多相应的算法,另一方面,它又面临着很多挑战,其难点之一是如何从多帧步态中有效地提取步态特征.针对此问题,并基于步态能量图(GEI)在步态特征表示上的效果,提出了一种迭代切距离原型学习算法.假定各人的步态分布在不同流形上面,首先用切距离改进步态能量图的定义,进而用迭代的方法来解一个最优解问题,从而学习出步态原型图,再通过PCA对步态原形进行特征提取,最后进行识别.证明了该方法的收敛性,实验结果表明所提出的方法取得了比GEI更好的识别率,并证明了步态流形的假设的合理性. Being the only biometry certification techniques for remote surveillance,gait recognition,on one hand,is regarded as being of important potential value,hence a lot of algorithms have been proposed,on the other hand,it has encountered a lot of challenges.Among all of the challenges gait recognition encountered,one of them is how to extract features efficiently from a sequence of gait frames.To solve this problem,and also based on the fact that gait energy image(GEI) is effective for feature representation,an iterative prototype algorithm based on tangent distance is proposed.Firstly,it is assumed that different gaits lie in different manifolds.As a result,the proposed algorithm refines the definition of gait energy image(GEI) using tangent distance.Then an iterative algorithm is proposed to learn the prototypes by solving an optimization problem.Finally,principal component analysis(PCA) is performed on the prototypes to obtain gait features for classification.The proposed method is proved converged,and experiment results show the promising results of the proposed algorithm in accuracy compared with the GEI's.The rationality of the assumption that gaits lie in specific manifolds is also validated through experiments.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1177-1182,共6页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60635030,60505002) 国家“八六三”高技术研究发展计划基金项目(2007AA01Z176) 华为公司科技基金项目
关键词 步态识别 特征提取 切距离 流形 步态能量图 gait recognition feature extraction tangent distance manifold gait energy image
  • 相关文献

参考文献16

  • 1陈昌由,张军平.步态识别的特征提取综述[J].计算机研究与发展,2007,44(z2):361-365. 被引量:3
  • 2Ekincl Murat, Gedikli Eyup. Silhouette based human motion detection and analysis for real-time automated video surveillance [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518
  • 3Cunado D, Nixon M S, Carter J. Using gait as a biometric, via phase-weighted magnitude spectral [C]//Audio and Video Based Biometric. Berlin: Springer, 1997
  • 4Wang L, Tan T N, Ning H Z, et al. Silhouette analysis based gait recognition for human identification[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 12(25): 1505-1518
  • 5Wang L, Tan T N, Hu W M, et al. Automatic gait recognition based on statistical shape analysis [J]. IEEE Transon Image Processing, 2003, 12(9): 1120-1131
  • 6BenAbdelkader Chiraz, Cutler R G, Davis L S. Gait recognition using image self-similarity[J]. EURASIP Journal on Applied Signal Processing, 2004, 4(4): 1-14
  • 7Kobayashi T, Otsu N. Action and simultaneous multipleperson identification using cubic higher order local autocorrelation [C]//Proc of the 17th Int'l Conf on Pattern Recognition. Cambridge: MIT Press, 2004
  • 8Yuuki Horita, Satoshi lto, Kenji Kaneda, et al. High precision gait recognition using a large-scale PC cluster [C]//Proc of the 3rd IFIP lnt'l Conf on Network and Parallel Computing. Tokyo:IEEE Computer Society, 2006
  • 9Ju Han, Bhanu B. Individual recognition using gait energy image (digital object identifier)[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 10(2): 316-322
  • 10Leon R D D, Sucar L E. Human silhouette recognition with Fourier descriptors [C]//Proc of the 15th Int'l Conf on Pattern Recognition. Cambridge, MA: MIT Press, 2000

二级参考文献17

  • 1[12]Yanmei Chai,Qing Wang,Jingping Jia,et al.A novel human gait recognition method by segmenting and extracting the region variance feature.The 18th Int'l Conf on Pattern Recognition (ICPR'06),Hong Kong,2006
  • 2[13]Agus Santoso Lie,Shuichi Enokida,Tomohito Wada,et al.Magnitude and phase spectra of foot motion for gait recognition.The 11th Int'l Conf on Computer Analysis of Images and Patterns (CAIP2005),Versailles,France,2005
  • 3[14]Xiaoli Zhou,B Bhanu.Feature fusion of face and gait for human recognition at a distance in video.The 18th Int'l Conf on Pattern Recognition (ICPR'06),Hong Kong,2006
  • 4[15]M Irani,S Peleg.Motion analysis for image enhancement:Resolution,occlusion and transparency.Journal of Visual Communication and Image Representation,1993,4(4):324-335
  • 5[16]J Han,B Bhanu.Statistical feature fusion for gait-based human recogntion.The 2004 IEEE Computer Society Conf on Computer Vision and Pattern Recogntion,Washington DC,2004
  • 6[17]Daoliang Tan,Kaiqi Huang,Shiqi Yu,et al.Efficient night gait recognition based on template matching.The 18th Int'l Conf on Pattern Recognition,Hong Kong,2006
  • 7[1]D Cunado,M S Nixon,J Carter.Using gait as a biometric,via phase-weighted magnitude spectral.Int'l Conf on Audio and Video-Based Biometric Person Authentication,Switzerland,1997
  • 8[2]Murat EKNC,Eyüp GEDKL.Silhouette based human motion detection and analysis for real-time automated video surveillance.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,25(12):1505-1518
  • 9[4]Liang Wang,Tieniu Tan.Automatic gait recognition based on statistical shape analysis.IEEE Trans on Image Processing,2003,12(9):1120-1131
  • 10[5]M Devrim Akca.ETH.Generalized procrusters analysis and its applications.http://e-collection.ethbib.ethz.ch/show?type=bericht&nr=363,2003

共引文献2

同被引文献68

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部