期刊文献+

树上推广的Multicut问题的近似算法 被引量:3

Approximation Algorithms for Generalized Multicut in Trees
下载PDF
导出
摘要 给定边上有费用的树T,终端集合族X={S1,S2,…,Sl},推广的Multicut问题询问费用最小的边集,使得在树上删除边集中的边能够断开每一个终端集.推广的Multicut问题有其独立的研究意义,因为该问题分别是经典的Multicut问题和Multiway Cut问题的自然推广,同时也是推广的Steiner Forest问题的对偶问题.树上推广的Multicut问题的完全版本可以归约到树上经典的Multicut问题近似求解.对于该问题的Prize-collecting版本,给出了原始-对偶的3倍近似算法.对于该问题的k版本,通过非一致的途径给出了近似比为min{2(l-k+1),k}的近似算法.以及找到了该问题的k版本与k-稠密子图问题之间的一个有趣的联系,从而证明了将k版本的树上推广的Multicut问题近似到O(n1/6-ε)以内是困难的(对某个小的常数ε>0). Given a tree T with costs on edges and a collection of terminal sets X={S1,S2,…,Sl},the generalized multicut in trees problem asks to find a set of edges on T whose removal cuts every terminal set in X,such that the total cost of the picked edges is minimized.The problem has its own interest since it naturally generalizes the classical multicut problem and the multiway cut problem,respectively,and also is the dual of the generalized Steiner forest problem.It is shown that the full version of the problem can be approximated within a factor of 2 by reducing it to the classical multicut in trees problem.In the prize-collecting version of the problem,a terminal set must pay the penalty πi if it is not cut by the picked edges.A primal-dual 3-approximation algorithm is given for the prize-collecting generalized multicut in trees problem via primal-dual schema.The k-version of the problem has to cut at least k terminal sets at the minimum cost,where k is a given parameter.It is shown that the k-version of the problem can be approximated within a factor of min{2(l-k+1),k} via a non-uniform approach.Furthermore,it is shown that there is an interesting relation between the generalized k-multicut in trees problem and the dense k-subgraph problem,implying that approximating the k-version of the problem within O(n1 6-ε) for some small ε〉0 is difficult.
作者 张鹏
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1195-1202,共8页 Journal of Computer Research and Development
基金 国家杰出青年基金项目(60325206) 国家自然科学基金项目(60310213)
关键词 Multicut 线性规划 近似算法 组合优化 multicut tree linear programming approximation algorithm combinatorial optimization
  • 相关文献

参考文献20

  • 1Garg N, Vazirani V, Yannakakis M. Primal-dual approximation algorithm for integral flow and multicut in trees [J]. Algorithmica, 1997, 18(1): 3-20
  • 2Levin A, Segev D. Partial multicuts in trees[C] //Proc of the 3rd Workshop on Approximation and Online Algorithms (WAOA). Berlin: Springer, 2005:320-333
  • 3Jain K, Mahdian M, Markaksi E, et al. Greedy facility location algorithms analyzed using dual fitting with factorrevealing LP [J]. Journal of the ACM, 2003, 50(6): 795- 824
  • 4Golovin D, Nagarajan V, Singh M. Approximating the kmulticut problem [C]//Proc of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA). New York: ACM Press, 2006:621-630
  • 5Jain K, Vazirani V. Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation[J]. Journal of the ACM, 2001, 48(2) : 274-296
  • 6Chudak F, Roughgarden T, Williamson D. Approximate k- MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation [J]. Mathematical Programming: Series A, 2004, 100(2): 411-421
  • 7Garg N, Vazirani V, Yannakakis M. Approximate max-flow min-(multi) cut theorems and their applications [J]. SIAM Journal on Computing, 1996, 25(2):235-251
  • 8Avidor A, Langberg M. The multi-multiway cut problem[C]//Proc of the 9th Scandinavian Workshop on Algorithm Theory (SWAT). Berlin: Springer, 2004:273-284
  • 9Agrawal A, Klein P, Ravi R. When trees collide: An approximation algorithm for the generalized Steiner problem on networks [J]. SIAM Journal of Computing, 1995, 24 (3) : 440-456
  • 10Geomans M, Williamson D. A general approximation technique for constrained forest problems[J]. SIAM Journal on Computing, 1995, 24(2): 296-317

二级参考文献14

  • 1Papadimitriou C H, Yannakakis M. Optimization, Approximation, and Complexity Classes. J.Comput. Syst. Sci, 1991, 43:425-440.
  • 2Goemans M X, Williamson D P. Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems using Semidefinite Programming. Journal of the ACM, 1995, 42:1115-1145.
  • 3Feige U, Goemans M X. Approximating the Value of Two Prover Proof Systems, with Applications to MAX 2SAT and MAX DICUT. In: Proceedings of the 3nd Israel Symposium on Theory and Computing Systems. Tel Aviv, Israel, 1995, 182-189.
  • 4Ageev A, Hassin R, Sviridenko M. A 0.5-approximation Algorithm for the Max Dicut with Given Sizes of Parts. SIAM J. Discrete Math, 2001, 14:246-255.
  • 5Halperin E, Zwick U. A Unified Framework for Obtaining Improved Approximation Algorithms for Maximum Graph Bisection Problems. Random Structures and Algorithms, 2002, 20:382-402.
  • 6Xu D, Han J, Huang Z, Zhang L. Improved Approximation Algorithms for Max n/2-directed-bisectionand Max n/2-dense-subgraph. Journal of Global Optimization, 2003, 27:399-410.
  • 7Han Q, Ye Y, Zhang J. An Improved Rounding Method and Semidefinite Programming Relaxation for Graph Partition. Mathematical Programming, 2002, 92:509-535.
  • 8Ye Y, Zhang J. Approximation of Dense-n/2-Subgraph and the Complement of Min-Bisection. Journal of Global Optimization, 2003, 25:55-73.
  • 9Ye Y. A 0.699-approximation Algorithm for Max-Bisection. Mathematical Programming, 2001, 90:101-111.
  • 10Feige U, Langberg M. The RPR2 Rounding Technique for Semidefinite Programs. Proceedings of the 28th Int. Coll. on Automata, Languages and Programming, Crete, Greece, 2001, 213-2204.

共引文献3

同被引文献15

  • 1Svitkina Z, Tardos E. Min-max multiway cut[C]// Lecture Notes in Computer Science 3122 :Proceedings of the 7th Interna- tional Workshop on Approximation Algorithms for Combinato- rial Optimization Problems. Heidelberg: Springer-Verlag, 2004: 207-218.
  • 2Dahlhaus E, Johnson D S, Papadimitriou C H, et al. The com- plexity of multiterminal cuts[J]. SIAM Journal on Computing, 1994,23:864-894.
  • 3Garg N, Vazirani V V, Yannakakis M. Multiway cuts in directed and node weighted graphs [C] ff Proceedings of ICALP' 94. 1994:487-498.
  • 4Calinescu G, Karloff H, Rabani Y. An improved approximation algorithm for MULTIWAY CUT[J]. Journal of Computer and System Sciences, 2000,60 (3) : 564-574.
  • 5Karger D R,Klein P N,Stein C,et al. Rounding algorithms for ageometric embedding of minimum multiway cut[J]. Mathema- tics of Operations Research, 2004,29 (3) :436-46i.
  • 6Naor J, Zosin L. A 2-approximation algorithm for the directed multiway cut problem [C] // Proceedings of the 38th Annual Symposium on Foundations of Computer Science. New York: IEEE Computer Society, 1997 : 548-553.
  • 7Ford L R,Fulkerson D R. Flows in networks[M]. New Jersey: Princeton University Press, 1962.
  • 8Papadimitriou C H, Steiglitz K. Combinatorial optimization: algorithms and complexity[M]. New Jersey: Prentice-Hall, 1982.
  • 9Bodlaender H L, Koster A M C A. Combinatorial optimization on graphs of bounded treewidth[J]. The Computer Journal, 2008,51(3) :255-269.
  • 10Kleinberg J, Tardos E. Algorithm design[M]. Boston: Addison- Wesley, 2005.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部