期刊文献+

一种基于位置数据库聚类的动态适应缓存位置信息策略 被引量:1

A Dynamic Adaptive Caching Location Strategy by Location Database Clustering
下载PDF
导出
摘要 移动环境中提高定位移动用户性能的一个重要方法是缓存用户的位置信息.然而已经提出的缓存策略针对的是单个用户,造成缓存的效率不高.针对群体用户提出了一种基于位置数据库聚类的动态适应缓存位置信息(DACaL)策略.其中位置数据库聚类算法通过挖掘群体移动用户的运动模式对位置数据库进行聚类,以确定缓存层次和降低位置管理的代价.动态适应缓存位置信息算法根据聚类结果对位置数据库进行重组,在相邻聚类之间缓存位置信息,建立旁路指针,以缩短消息传输的路径和减少查询位置数据库的次数.实验表明,DACaL策略能够有效地降低总体代价,性能上优于相关策略. In mobile environment,an important method to improve the performance of locating mobile users is caching users' location information.In addition,location databases in hierarchical structure can be clustered to reduce the total cost of location management.However,previous caching strategies aim at a single user,which causes caching to be inefficient,and the existing location database clustering approaches do not consider caching users' location information.A dynamic adaptive caching location(DACaL) strategy based on location database clustering is proposed for mass mobile users.DACaL strategy utilizes the advantages of both caching and clustering techniques to reduce the total cost of location management in mobile environment,which is divided into the following two steps.In LDB-clustering,location databases are clustered by mining mobile users' moving pattern to determine the caching level and reduce the location management cost.LDB clustering is a set covering problem.In dynamic-adaptive-caching,location databases are reorganized based on clustering result,location information is cached,and bypass pointers are created between adjacent clusters to shorten signal traveling path and to abate times of querying location databases.Dynamic adaptive caching is a TSP problem.Experiments show that DACaL strategy can reduce the total cost of location management and has better performance than other strategies.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1203-1210,共8页 Journal of Computer Research and Development
基金 国家部委基金项目(513150402) 湖北省自然科学基金项目(ABA048)
关键词 动态适应缓存 聚类 位置数据库 移动环境 旁路指针 dynamic adaptive caching cluster location database mobile environment bypass pointer
  • 相关文献

参考文献12

  • 1Evaggelia Pitoura, George Samaras. Locating objects in mobile computing [J]. IEEE Trans on Knowledge and Data Engineering, 2001, 13(4) : 571-592
  • 2朱艺华,朱帆,罗和治.基于移动的位置管理策略中最优寻呼研究[J].计算机研究与发展,2007,44(7):1199-1204. 被引量:1
  • 3Jain R. Reducing traffic impacts of PCS using hierarchical user location databases [C] //Proc of the IEEE Int'l Conf on Communications. Los Alamitos: IEEE Computer Society Press, 1996
  • 4Lee Sing-Ling, Lin Hwa-Chuan, Kou Pei-Xian. A lazy caching location strategy with bypass pointers in PCS [J]. Journal of Information Science and Engineering, 2004, 20 (4): 617-641
  • 5马帅,王腾蛟,唐世渭,杨冬青,高军.基于聚类的位置数据库动态重组[J].软件学报,2003,14(5):963-969. 被引量:3
  • 6马帅,唐世渭,杨冬青,王腾蛟.一种用于位置数据库结构调整的增量聚类算法[J].软件学报,2004,15(9):1351-1360. 被引量:5
  • 7Chen Jixiong, Li Guohui. Location database clustering to achieve locatiocn management time cost reduction in a mobile computing system [C] //Proc of the Int'l Conf on Wireless Communications, Networking and Mobile Computing. Piscataway, NJ: IEEE, 2005: 1328-1332
  • 8Li Guo-Hui, Lam Kam-Yun, Kuo Tei-Wei, et al. Location management in cellular mobile computing systems with dynamic hierarchical location databases [J]. Journal of Systems and Software, 2003, 69(1-2) : 159-171
  • 9Wang J Z. A fully distributed location registration strategy for universal personal communication systems [J]. IEEE Journal on Selected Areas in Communications, 1993, 11(6) : 850-860
  • 10Cormen T, Leiserson C, Rivest R, et al. Introduction to Algorithm, Second edition [M]. Cambridge, MA: MIT Press, 2001

二级参考文献45

  • 1朱艺华,肖刚,史定华,高济.小区分层依概率寻呼的位置管理策略[J].电子学报,2004,32(11):1810-1814. 被引量:3
  • 2朱艺华,俞立.带模糊控制的动态指针推进移动性管理策略[J].计算机研究与发展,2005,42(12):2048-2055. 被引量:2
  • 3[1]Wong VWS, Leung CM. Location management for next generation personal communication networks. IEEE Network, 2000,14(5):18~24.
  • 4[2]Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 335~393.
  • 5[3]Ng R, Han J. Efficient and effective clustering method for spatial data mining. In: Bocca JB, Jarke M, Zaniolo C, eds. Proc. of the 20th Int'l Conf. on Very Large Data Bases. San Fransisco: Morgan Kaufmann Publisheers, 1994. 144~155.
  • 6[4]Guha S, Rastogi R, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998.73~84.
  • 7[5]Guha S, Rastogi R, Shim K, ROCK: A robust clustering algorithm for categorical attributes. In: Proc. of the 15th Int'l Conf. on Data Engineering. IEEE Computer Society, 1999. 512~521.
  • 8[6]Karypis G, Han E-H, Kumar V. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer, 1999,32(8):68~75.
  • 9[7]Estivill-Castro V, Lee I. AMOEBA: Hierarchical clustering based on spatial proximity using delaunay diagram. In: Forer P, Yeh AGO, He J, eds. Proc. of the 9th Int'l Symposium on Spatial Data Handling. Hong Kong: Study Group on Geographical Information Science of the International Geographical Union, 2000. 7a.26~7a.41.
  • 10[8]Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226~231.

共引文献5

同被引文献17

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部