期刊文献+

DTI扩散张量的一种稳健估计方法 被引量:5

A Robust Diffusion Tensor Estimation Method for DTI
下载PDF
导出
摘要 为了获得更精确的DTI扩散张量场,提出了一种基于约束M估计子的稳健估计方法.首先对扩散加权图像序列进行双树复数小波降噪预处理,以减少热噪声影响.然后通过试探法找到一个合适的回归起始点,并通过Cholesky分解对扩散张量进行正定约束.最后寻找局部最小获得DTI扩散张量的约束M估计,并在模拟二阶张量场和真实DTI数据集上进行了实验.与最小二乘法和M估计子回归模型相比,该方法可以更有效地排除热噪声和生理性离群点影响,对DTI扩散张量估计很有价值. In diffusion tensor imaging(DTI),diffusion tensor maps are typically calculated from a sequence of diffusion weighted images.However,the diffusion weighted imaging is often influenced by both thermal noise and physiological noise such as artifacts caused by physiological motions.A robust estimation method based on the constrained M-estimator with high breakdown point and high asymptotic efficiency is proposed in this paper for acquiring more accurate DTI diffusion tensor field.First,during preprocessing phase,thermal noise in the diffusion weighted images is removed by implementing dual-tree complex wavelet transform.Then an appropriate regression starting point can be found by random sampling and considering simultaneously the positivity constraint of the diffusion tensor via the Cholesky factorization.Finally,local minimum of the objective function is obtained to achieve constrained M-estimation of the DTI diffusion tensor.Experiments are performed on the synthetic second-order tensor field and the real DTI data set,both corrupted by various levels of outliers.The calculated results show that the proposed method can remove thermal noise and physiological outliers more efficiently compared with the least square regression model and the Geman-McClure M-estimator which are more robust than the standard least square method.Therefore,the proposed method may be particularly useful for the DTI diffusion tensor estimation.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第7期1232-1238,共7页 Journal of Computer Research and Development
关键词 扩散加权成像 扩散张量成像 张量估计 约束M估计子 生理性噪声 DWI DTI tensor estimation constrained M-estimator physiologic noise
  • 相关文献

参考文献11

  • 1Basser P J, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging [J]. Biophysica, 1994, 66(1): 259 -267
  • 2Basser P J, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT MRI data[J]. Magnetic Resonance Medicine, 2000, 44(4): 625-632
  • 3Poupon C, Mangin J, Frouin V, et al. Regularization of MR diffusion tensor maps for tracking brain white matter bundles [G]//Proc of MICCAI, LNCS1496. Berlin: Springer, 1998: 489-498
  • 4Westin C, Maier S E, Khidhir B, etal. Image processing for diffusion tensor magnetic resonance imaging [G]//Proc of MICCAI, LNCS1679. Berlin: Springer, 1999:441-452
  • 5Weickert J, Brox T. Diffusion and regularization of vectorand matrix valued images, 58 [R]. Saarland; Department of Mathematics, Saarland University, 2002
  • 6Welk M, Feddern C, Burgeth B, et al. Median filtering of tensor-valued images [G]//Proc of German Conf on Pattern Recognition, LNCS2781. Berlin: Springer, 2003:17-24
  • 7Welk M, Weickert J, Becker F, et al. Median and related local filters for tensor-valued images, 135 [R]. Saarbrucken, Germany: Saarland University, 2005
  • 8Mangin J, Poupon C, Clark C, et al. Distortion correction and robust tensor estimation for MR diffusion imaging [J]. Medicine Image Analysis, 2002, 6(3): 191-198
  • 9Arslan O, Edlund O, Ekblom H. Algorithms to compute CM and S-estimates for regression [J]. Metrika, 2002, 55 (1): 37-51
  • 10Edlund O, Ekblom H. Computing the constrained Mestimates for regression [J]. Computational Statistics Data Analysis, 2005, 49(1) : 19-32

二级参考文献14

  • 1Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophysica, 1994,66:259-267.
  • 2Basser PJ, Pajevic S, Pierpaoli C, et al. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000,44 (4) :625-632
  • 3Poupon C, Mangin J, Frouin V, Regis J, Poupon F, Pachot-Clouard M, Le Bihan D, Bloch I. Regularization of MR diffusion tensor maps for tracking brain white matter bundles. MICCAI, 1998,489-498.
  • 4Westin C, Maier SE, Khidhir B, Everett P, Jolesz FA, Kikinis R. Image processing for diffusion tensor magnetic resonance imaging. MICCAI, 1999,1679:441-452.
  • 5Weickert J, Brox T. Diffusion and regularization of vectorand matrix valued images. Contemporary Mathematics, 2002,313:251-265.
  • 6Welk M, Feddern C, Burgeth B, Weickert J. Median filtering of tensor-valued images. Pattern Recognition. Lecture Notes in Computer Science,2003,2781:17-24.
  • 7Welk M, Weiekert J, Beeker F, Sehnorr C, Feddern C, Burgeth B. Median and related local filters for tensor-valued images. Technical Report No. 135, Saarland University, 2005.
  • 8Mangin JF, Poupon C, Clark C, Le Bihan D, Bloch I. Distortion correction and robust tensor estimation for MR diffusion imaging. Med Image Anal. 2002,6 : 191-198.
  • 9Tschumperle D, Deriche R. Variational Frameworks for DTMRI Estimation, Regularization and Visualization, in ICCV' 03,2003,116-121.
  • 10Donoho DL. De-noising by soft-thresholding. IEEE Trans Inform Theory. 1995,41:613-627.

共引文献2

同被引文献58

  • 1Basser P, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging [ J]. Biophysical Journal, 1994, 66 (1):259 - 267.
  • 2Susumu M, Zhang Jiangyang. Principles of diffusion tensor primer imaging and its applications to basic neuroscienee research [J]. Neuron, 2006, 51(5) : 527 - 539.
  • 3Heemskerk A M, Sinha T K, Wilson K J, et al. Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters [J]. Magnetic Resonance in Medicine, 2009 , 61(2) :467 -72.
  • 4Fechete R, Demco D E, Eliav U, et al. Self-diffusion anisotropy of water in sheep Achilles tendon[ J]. NMR in Biomedicine. 2005, 18(8): 577-586.
  • 5Basser P J, Pajevic S. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused by background noise[ J ]. Magnetic Resonance in Medicine, 2000, 44:41 - 50.
  • 6Jones D K, Basser P J. Squashing peanuts and smashing pumpkins: how noise distorts diffusion-weighted MR data[J]. Magnetic Resonance in Medicine, 2004, 52:979 - 993.
  • 7Anderson A W. Theoretical analysis of the effects of noise on diffusion tensor imaging [ J ]. Magnetic Resonance in Medicine, 2001,46 (6) : 1174 - 1188.
  • 8Parker G J, Schnabel J A, Symms M R, et al. Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging [ J ]. J Magn Reson Imag, 2000, 11:702 - 710.
  • 9Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing[ J]. Int J Comput Vis, 2006, 66:41 - 66.
  • 10Weickert J. Coherence-enhancing diffusion filtering [ J ]. Int J Comput Vis, 1999, 31:111 - 127.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部