期刊文献+

反铁电陶瓷的强电子发射特性研究 被引量:3

Strong electron emission of antiferroelectric ceramic
原文传递
导出
摘要 采用掺镧锆锡钛酸铅反铁电陶瓷作为阴极材料,研究了脉冲电压激励下陶瓷的电子发射特性.当激励电压为800V、抽取电压为0V时,得到1.27A/cm2的发射电流密度;当抽取电压增加到4kV时,获得1700A/cm2的发射电流密度.分析了发射电流随抽取电压的变化关系,讨论了反铁电陶瓷强电子发射的内在机理.结果表明:掺镧锆锡钛酸铅反铁电陶瓷能够在较低的激励电压(400V)下实现电子发射,发射电流远大于按照Child-Langmuir定律计算出的电流,三接点附近局域反铁电—铁电相变产生初始电子发射,初始电子电离中性粒子形成等离子体,增强了电子发射. The electron emission of a novel antiferroelectric cathode material La-doped Pb(Zr, Sn, Ti) O3 (PLZST) has been studied. For driving voltage of 800 V and accelerating voltage of 0 V, the emission current density was 1.27 A/cm2 . For driving voltage of 800 V and accelerating voltage of 4 kV, a strong emission current density with 1700 A/cm2 was obtained. The dependence of emission current on accelerating voltage was analyzed and the mechanism of antiferroelectric electron emission was discussed. It was found that strong electron emission from antiferroelectric material can be realized under lower driving voltage and the emission current was much larger than that predicted by the Child-Langmuir law. Local antiferroelectric-ferroelectric phase transition in the vicinity of the triple junction leads to initial electron emission, and these initial electrons then cause desorption of gas which had been absorbed at the ceramic surface. The desorbed gas is then ionized, which leads to plasma generation. The formation of surface plasma enhances the emission current.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第7期4590-4595,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(973)项目(批准号:2002CB613307) 国家自然科学基金(批准号:50472052)资助的课题~~
关键词 铁电阴极 反铁电体 电子发射 ferroelectric cathode, antiferroelectric, electron emission
  • 相关文献

参考文献14

  • 1Miller R C,Savage A 1960 J. Appl. Phys. 21 662
  • 2Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. Instrum. Methods. Phys Res .A 280 1
  • 3Chirko K,Krasik Y E,Felsteiner J 2002 J. Appl. Phys. 92 5691
  • 4Riege H 1994 Nucl.Instrum. Methods. Phys Res. A 340 80
  • 5Fleddermann C B,Nation J A 1997 IEEE. Trans. Plosma. Sci. 25 212
  • 6Riege H,Boscolo I,Handerek J,Herleb U 1998 J. Appl. Phys. 84 1602
  • 7Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109
  • 8Gundel H,Riege H,Wilson E J N 1989 Ferroelectrics. 100 1
  • 9Gundel H 1992 Integrated Ferroelectrics. 2 207
  • 10Yong T K, Ki H Y 2000 Appl. Phys. Lett. 76 3977

二级参考文献63

共引文献24

同被引文献39

  • 1Gundel H, Reige H, Wilson E J N, Handerek J, Zioutas K 1989 Nucl. lnstrum. Meth. Phys. Res. A 280 1
  • 2Rosenman G, Shur D, Garb K, Cohen R, Krasik Y E 1997 J. Appl. Phys. 82 772
  • 3Riege H 1994 Nucl. Instrum. Meth. Phys. Res. A 340 80
  • 4Fleddermann C B, Nation J A 1997 IEEE Trans. Plasma Sci. 25 212
  • 5Rosenman G, Shur D, Krasik Y E, Dunaevsky A 2000 J. Appl. Phys. 88 6109
  • 6Auciello O H, McGuire G E 1995 U.S. Patent 5453661
  • 7Kemp M A, Kovaleski S D 2006 J. Appl. Phys. 100 1133061
  • 8Kovaleski S D 2002 the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., Indianapolis
  • 9Krasik Y E, Chirko K, Dunaevsky A, Gleizer J Z, Krokhmal A, Sayapin A, Felsteiner J 2003 IEEE Trans. Plasma Sci. 31 49
  • 10Sampayan S E, Caporaso G J, Holmes C L, Lauer E J, Prosnitz D, Trimble D O, Westenskow G A 1994 Nucl. Instrum. Meth. Phys. Res. A34090

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部