期刊文献+

奇异非线性Sturm-Liouville边值问题正解的全局结构 被引量:5

Global Structure of Positive Solutions of Singular Nonlinear Sturm-Liouville Problems
下载PDF
导出
摘要 该文利用拓扑方法讨论一类非线性Sturm-Liouville边值问题{-u″=λf(x,u),α_0u(0)+β_0u′(0)=0,α_1u(1)+β_1u′(1)=0;作者在非线性项不奇异和奇异两种情况下研究了上述问题正解解集的全局结构,在非线性项f不满足条件f(x,u)≥0(u≥0)时获得了正解的存在性. In this paper, the following nonlinear Sturm-Liouville problem {-u″=λf(x,u), α0u(0)+β0u′(0)=0,α1u(1)+β1u′(1)=0; is discussed by topological methods. In the case that the nonlinear term is non-singular or singular, global structure of the positive solution set of the above problem is obtained, and the existence of positive solutions of the above problem is proved under the condition that the nonlinear term f(x, u) does not satisfy f(x, u) ≥ 0(u ≥ 0).
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第3期424-433,共10页 Acta Mathematica Scientia
基金 国家自然科学基金(10671167)资助
关键词 非线性Sturm-Liouville问题 正解 全局结构 拓扑方法 Nonlinear Sturm-Liouville problem Positive solution Global structure Topological methods.
  • 相关文献

参考文献18

  • 1Sun Jingxian. A theorem in point set topology. J Sys Sci Math Sci, 1987, 7(2): 148-150
  • 2Sun Jingxian, Liu Yansheng. Multiple positive solutions of singular third-oder periodic boundary value problem. Acta Mathematics Scientia, 2005, 25B(1): 81-88
  • 3Rabinowitz P H. Some global results for nonlinear eigenvalue problems. J Functional Anal, 1971, 7: 487-513
  • 4孙经先.非线性Hammerstein型积分方程正解存在性及其应用[J].数学年刊:A辑,1988,9(1):90-96.
  • 5江泽函.拓扑学引论.上海:上海科技出版社,1978
  • 6Deimling K. Nonlinear Functional Analysis. Berlin: Springer-Verlag, 1985
  • 7Ma Ruyun, Wu Hongping. Positive solutions for four-order two-point boundary value problems. Acta Mathematics Scientia, 2002, 22A(2): 244-249
  • 8Cai Guoqing. The existence of positive solutions for singular boundary value problems. Acta Mathematics Scientia, 2001, 21A(4): 521-526
  • 9Robert D. Positive solutions of singular boundary value problem. Nonlinear Analysis, 1996, 27(6): 645-652
  • 10Cheng Jiangang. On a class of singular two-point boundary value problems. Acta Mathematics Scientia, 2000, 20A(1): 109-114

二级参考文献18

  • 1Lan, K. Q. & Webb, J., Positive solutions of semilinear differential equation with singularity [J], J. Diff. Equation, 148(1998), 407-421.
  • 2Keller, H. B., Some positive problems suggested by nonlinear heat generation [A], in "Bifurcation Theory and Nonlinear Eigenvalue Problems" (J. B. Keller and S. Antman Eds.) [M], 217-255, Benjiamin, Elmsfors, New York, 1969.
  • 3Guo, D. & Lakshmikantham, V., Nonlinear problems in abstract cones [M], Academic Press, San Diego, 1988.
  • 4Luiper, H. J., On positive solutions of nonlinear elliptic eigenvalue problems [J], Rend.Cire. Mat. Palenno, 20:2(1979), 113-138.
  • 5Erbe, L. H. & Hu Shouchuan, Multiple positive solutions of some boundary value problems [J], Nonlinear Anal., 184(1994), 640-648.
  • 6Garaizer, X., Existence of positive radial solutions for semilinear elliptic problems in the ammukus [J], J. Differential Equations, 70(1987), 69-72.
  • 7Guo, D. & Sun. J., Calculation and application of topological degree [J], Math. Res.Expo., 8(1988), 469--480 (in Chinese).
  • 8Ha, Ki Sik & Lee Yong-hoon, Existence of multiple positive solutions of singular boundary value problems [J], Nonlinear Anal., 28(1997), 1429-1438.
  • 9Eloe, P. W. & Henderson, Positive solutions for higher order nonlinear equations [J], J.Differential Equations, 3(1995), 1-8.
  • 10Henderson & Wang, H., Positive solutions of nonlinear eigenvalue problems [J], J. Math.Anal. Appl., 208(1997), 252-259.

共引文献13

同被引文献33

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部