摘要
该文在赋范线性空间中对集值映射引入锥-Henig有效次梯度和锥-Henig有效次微分的概念.借助凸集分离定理证明了锥-Henig有效次微分的存在性,并且建立了线性泛函为锥-Henig有效次梯度的充要条件。最后,对于一类参数扰动集值优化问题讨论了其在Henig有效意义下的稳定性.
In normed linear spaces, the concepts of cone-Henig efficient subgradient and cone- Henig efficient subdifferential for a set-valued mapping are introduced. By using the convex set separation theorem, the exis.tence theorem for cone-Henig efficient subdifferential is proposed, and the sufficient and necessary condition for a linear functional being a cone-Henig efficient subgradient is established. Finally, the stability problem for a kind of perturbed set-valued opimization problem is considered in sense of Henig efficiency.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2008年第3期438-446,共9页
Acta Mathematica Scientia
基金
国家自然科学基金(60674708)
宁夏高等学校科学研究项目(200711)
北方民族大学校内科学研究项目(2007Y045)资助