期刊文献+

具有种群Logistic增长及饱和传染率的SIS模型的稳定性和Hopf分支 被引量:18

Stability and Hopf Bifurcation of an SIS Model with Species Logistic Growth and Saturating Infect Rate
下载PDF
导出
摘要 该文研究一类具有种群Logistic增长及饱和传染率的SIS传染病模型,讨论了平衡点的存在性及全局渐近稳定性,得到疾病消除的阈值就是基本再生数R_0=1.证明了,当R_0<1时,无病平衡点全局渐近稳定;当R_0>1且αK≤1时,正平衡点全局渐近稳定;当R_0>1且△=0时,系统在正平衡点附近发生Hopf分支;当R_0>1且△<0时,系统在正平衡点外围附近存在唯一稳定的极限环. In this paper, an SIS infective model with species Logistic growth and saturating infective rate is studied. The author discusses the existence and the globally asymptotical stability of the equilibrium, and obtains the threshold value at which disease is eliminated, which is just the basic rebirth number R0 = 1. The author proves that when R0 〈 1, the nondisease equilibrium is globally asymptotically stable; when R0 〉 1 and αK ≤ 1, the positive equilibrium is globally asymptotically stable; when Ro 〉 1 and Δ = 0, a Hopf bifurcation occurs near the positive equilibrium; when R0 〉 1 and Δ〈 0, the system has a unique limit cycle which is stable near the outside of the positive equilibrium.
作者 徐为坚
出处 《数学物理学报(A辑)》 CSCD 北大核心 2008年第3期578-584,共7页 Acta Mathematica Scientia
基金 国家自然科学基金(10471117) 广西教育厅科研项目(200510211)资助
关键词 平衡点 全局渐近稳定 极限环 HOPF分支 Equilibrium Global asymptotic stability Limit cycle Hopf bifurcation.
  • 相关文献

参考文献10

  • 1Kermack W O, McKendrick A G. Contribution to the mathematical theory of epidemics. Proc Roy Soc, 1932, 138(1): 55-83
  • 2Cooke K L, York J A. Some equations modeling growth processes and gonorrhea epidemics. Math Biol, 1973, 16(1): 75-101
  • 3Busenberg S, Cooke K L. The effect of integral conditions in certain equations modeling epidemics and DoDulation growth. J Math Biol, 1980, 10(1): 13-32
  • 4原三领,马知恩,韩茂安.一类含时滞SIS流行病模型的全局稳定性[J].数学物理学报(A辑),2005,25(3):349-356. 被引量:13
  • 5Li J, Ma Z. Qualitative analysis of SIS epidemic model with vaccination and varying total population size. Mathl Comput Modelling, 2002, 35:1235-1243
  • 6Li Jianquan, Ma Zhien, Zhou Yicang. Glbal analysis of sis epidemic model with a simple vaccination and multiple endemic equilibria. Acta Mathematica Scientia, 2006, 26B(1): 83-93
  • 7Cooke K L, van den Driessche P, Zou X. Interaction of maturation delay and nonlinear birth in population and epidemic models. J Math Biol, 1999, 39(2): 332-352
  • 8宋新宇,肖燕妮,陈兰荪.具有时滞的生态-流行病模型的稳定性和Hopf分支[J].数学物理学报(A辑),2005,25(1):57-66. 被引量:27
  • 9Anderson R M, May R M. Population biology of infectius diseases I. Nature, 1979, 280(5721): 361-367
  • 10Dietz K. Overall Population Patterns in the Transmission Cycle of Infection Disease Agents. In: Anderson R M, May R M. Population Biology of Infectious Diasease. Berlin: Springer, 1982. 87-102

二级参考文献19

  • 1Hethcote H W. A thousand and one epidemic models. In: S A Levin, ed. Frontiers in Mathematical Biology, Lecture Notes in Biomathematics 100, Berlin/Heidelberg, New York: Springer-Verlag, 1994. 504-515.
  • 2Anderso R M,May R M.Infectious Disease of Humans,Dynamics and Control.London:Oxford University Press, 1991.
  • 3Bailey N J T. The Mathematical Theory of Infectious Disease and Its Applications. London: Griffin, 1975.
  • 4Diekmann O,Hecsterbeck J A P,Metz J A J.The legacy of Kermack and Mckendrick.In:D Mollision,ed.Epidemic Models: Their Structure and Relation to Dat. Cambridge: Cambridge University Press, 1994.
  • 5Hadeler K P, Freedman H I. Predator-prey population with parasitic infection. J Math Biol, 1989, 27: 609-631.
  • 6Chattopadhyay J, Arino O. A predator-prey model with disease in the prey. Nonlinear Anal. 1999, 36: 749-766.
  • 7Venturino E. The influence of disease on Lotka-Volterra system. Rockymount. J Math, 1994, 24: 389-402.
  • 8Xiao Y N, Chen L S. Modeling and analysis of a predator-prey model with disease in the prey. Math Biosci, 2001, 171(1): 59-82.
  • 9Holmes J C, Bethel W M. Modification of intermediate host behavior by parasites. In: E V Canning, C A Wright, eds. Behavioural Aspects of Parasite Transmission Zool f Linnean Soc, 1972, 51(1): 123-149.
  • 10Peterson R O, Page R E. Wolf density as a predictor of predator rate. Swedish Wildlife Research Suppl, 1987, 1: 771-773.

共引文献38

同被引文献93

引证文献18

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部