期刊文献+

强流脉冲电子束辐照诱发的AISI 304奥氏体不锈钢中的空位簇缺陷 被引量:6

Microstructure of defect clusters in AISI 304 austenitic stainless steel induced by high-current pulsed electron beam
下载PDF
导出
摘要 利用强流脉冲电子束技术对AISI304奥氏体不锈钢进行辐照处理,采用透射电子显微镜详细地分析了辐照诱发的空位簇缺陷结构。1次辐照未产生空位簇缺陷结构;5、10次辐照后诱发大量的空位簇缺陷结构,缺陷尺寸通常小于10nm,随辐照次数增加,缺陷簇数量明显增加,但尺寸增加不明显;小缺陷簇主要由空位型位错圈和少量的堆垛层错四面体(SFT,stacking fault tetrahedral)组成,SFT占整个缺陷簇的比例低于1%;少量的孔洞缺陷在孪晶片附近出现。10次辐照后,孪晶片前沿或附近形成大量的大尺寸SFT,其最大尺寸可达250nm,这些大尺寸SFT的形成机制与小尺寸SFT的有所不同,通过1/3<111>位错攀移在孪晶片前沿和孪晶界上的台阶处形成的压杆位错核心吸收周围丰富的空位而长大可能是大尺寸SFT形成的原因。 AISI 304 austenitic stainless steel specimens were irradiated with high current pulsed electron beam (HCPEB) for 1, 5 or 10 pulses. The defect cluster rnicrostructures were investigated by transmission electron microscopy (TEM). While the 1-pulse HCPEB irradiated specimen dose not show any microstructure change, the original microstructure changed completely after the repeated HCPEB irradiation. Dense small defect clusters in sizes of a few nanometers were introduced in the sample, and part of them can be resolve as stacking fault tetrahedral (SFT). For 10-pulse HCPEB irradiation, large-size SFTs normally located at the tip of twin lamellae, and sometimes located in or inside twin lamellae were formed. The largest SFTs were 250 nm approximately. The formation mechanism of large-size SFTs is different from that of the small counterpart. There is a close relationship between large-size SFTs and twin lamellae.
出处 《核技术》 EI CAS CSCD 北大核心 2008年第7期519-523,共5页 Nuclear Techniques
基金 国家自然科学基金(50671042) 江苏大学高级人才基金(07JDG032)资助
关键词 强流脉冲电子束 奥氏体不锈钢 空位簇缺陷 堆垛层错四面体 High current pulsed electron beam, Austenitic stainless steel, Vacancy cluster defects, Stacking fault tetrahedral
  • 相关文献

参考文献18

  • 1Gan J, Simonen E P, Bruemmer S M, et al. J Nucl Mater, 2004, 325:94-106
  • 2Garner F A, Toloczko M B. J Nucl Mater, 1997, 251: 252-256
  • 3Pawel J E, Rowcli A F, Lucas G E, et al. J Nucl Mater, 1996, 239:261-268
  • 4Rowcli A F, Zinkle S J, Stubbins J F, et al. J Nucl Mater, 1998, 258:183-192
  • 5Belyakov V A, Fabristsiev S A, Mazul I V. J Nucl Mater, 2000, 283:962-967
  • 6Hashimoto N, Zinkle S J, Rowcli A F, et al. J Nucl Mater, 2000, 283:528-534
  • 7Mansur L K. J Nucl Mater, 2003, 318:14-25
  • 8Guan Q F, Pan L, Zou H, et al. J Mater Sci, 2004, 39: 6349-6351
  • 9Guan Q F, Zhang Q Y, Dong C, et al. J Mater Sci, 2005, 40(18): 5049-5052
  • 10Guan Q E Wang S Q, Cui x H, et al. ISIJ Int, 2007, 47: 1375-1377

二级参考文献22

  • 1李荣斌.物理学报,2003,52:3135-3135.
  • 2Proskurovsky D I, Rotshtein V P, Ozur G E et al 1998 J. Vac.Sci. Technol. A 16 2480
  • 3Proskurovsky D I, Rotshtein V P, Ozur G E et al 2000 Surf. Coat.Technol. 125 49
  • 4Pogrebnjak A D, Ladysev V S, Pogrebnjaket N A et al 2000Vacuum 58 45
  • 5Le X Y, Yan S, Zhao W J et al 2000 Surf. Coat. Technol. 128-129 381
  • 6Markov A B, Rotshtein V P 1997 Nucl. Instrum. Methods Phys.Res. B 132 79
  • 7Hao S Z, YaoS, GuanJ etal 2001 CurrentAppl. Phys. 1203
  • 8Pogrebnjak A D, Isakov I F, Opekunov M S et al 1987 Phys. Lett.A 123 410
  • 9Pogrebnjak A D, Shablya V T, Sviridenko N V et al 1999 Surf.Coat. Technol. 111 46
  • 10Sorescu M 1998 J.Alloys Compd. 280 251

共引文献20

同被引文献56

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部