期刊文献+

一种保持视觉特征的三维几何模型简化算法 被引量:2

3D Geometric Model Simplification Method Based on Preserved Vision Feature
下载PDF
导出
摘要 针对三维模型简化中保留细节特征的要求,提出了一种基于视觉特征保持的三维几何模型简化算法。采用半边折叠操作,综合考虑了网格模型中半边的几何重要性和变化误差,并将其作为各半边的折叠代价来确定模型中边的折叠顺序,在模型简化后又利用顶点"微调"法对简化模型进行了局部视觉效果修正。实验研究结果表明:本文提出的三维几何模型简化算法能有效地保留模型的细节特征,并能显著改善模型因简化产生的形变,是一种简单、有效的模型简化算法。 To satisfy the requirement of preserving details in equipment geometric model simplification, a novel 3D geometric model simplification method based on preserved vision feature was put folward. In the algorithm, a new error metric rule based on the geometric importance (including the length of the edge and the vertical curvature) and change error of a half-edge was proposed to determine the order of edge collapse in 3D geometric model simplification. And then, a vertex micro-adjusting algorithm was adopted to modify the local details of the 3D geometric model. Experimental results show that the proposed simplification method is practical and convenient, and can effectively preserve model details and obviously improve model distortion in 3D geometric model simplification.
出处 《光电工程》 CAS CSCD 北大核心 2008年第7期63-67,89,共6页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60772151) 总参装备维修资助项目
关键词 三维几何模型 视觉特征 简化 曲率 三角片 3D geometric mode vision-feature simplification curvature triangular patches
  • 相关文献

参考文献9

  • 1Rossignac J, Borrel P. Multi-resolution 3D approximation for rendering complex scenes [C]// Falcidieno B, Kunii T. Geometric modeling in computer graphics. Springer Verlag: [s.n.], 1993: 455-465.
  • 2Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, et al. Simplification envelopes [C]// Computer Graphics Proceedings, Annual Conference Series (Siggraph'96). New York: ACM, 1996:119-128.
  • 3邹北骥,申煜湘,彭群生.局部包络片控制误差简化三角网格模型[J].电子学报,2005,33(5):798-803. 被引量:2
  • 4Kalvin A, Taylor R. Superfaces: Ploygonal mesh simplification with bounded error [J]. IEEE Computer Graphics and Applications, 1996, 16(3): 64-77.
  • 5Hoppe H, DeRose T, Duchamp T, et al. Mesh optimization [J]. Proc. of the Computer Graphics, 1993, 27: 19-26.
  • 6Garland M, Heckbert PS. Surface simplification using quadric error metrics [J]. Proc. of the Computer Graphics, 1997, 31: 209-216.
  • 7Lindstrom P, Turk G. Fast and Memory Efficient Polygonal Simplification[C]//Proe.Conf. Visualization '98. [S.l.]: IEEE, 1998: 279-286.
  • 8Kim S J, Jeong W K, Kim C H. LOD generation with discrete curvature error metirc[C]//In: Proceedings of the 2nd Korea Israel Bi-National Conference on Geometrical Modeling and Computer Graphics. Korea: [s.n.], 1999: 97-104.
  • 9全红艳,张田文,董宇欣.一种基于区域分割的几何模型简化方法[J].计算机学报,2006,29(10):1834-1842. 被引量:20

二级参考文献26

  • 1W J Schroeder,J A Zarge,W E Lorensen.Decimation of triangle meshes[J].Computer Graphics,1992,26(2):65-70.
  • 2J Rossignac,P Borrel.Multi-resolution 3D approximations for rendering complex scenes[J].Geometric Modeling in Computer Graphics,1993:455-465.
  • 3Hoppe H.Progressive meshes[A].Computer Graphics Proceedings,Annual Conference Series (Siggraph'96)[C].New York,1996.99-108.
  • 4Jovan Popovic,Hugues Hoppe.Progressive Simplicial Complexes[DB/OL].ftp://ftp.cs.cmu.edu/~jovan,1996.
  • 5M Eck,T DeRose,T Duchamp,M Lounsberry,W Stuetzle.Multiresolution Analysis of Arbitrary Meshes[DB/OL].ftp://ftp.cs.washington.edu,1995.
  • 6Michael Garland,Paul S Heckbert.Surface simplification using quadric error metrics[A].Computer Graphics Proceedings,Annual Conference Series (Siggraph'96)[C].New York,1997.209-216.
  • 7Paul S Heckbert,Michael Garland.Optimal Triangulation and Quadric-Based Surface Simplification[DB/OL].http://www.cs.cmu.edu/~garland/quadrics,1999.
  • 8Michael Garland.Quadric-Based Polygonal Surface Simplification[DB/OL].http://www.adm.cs.cmu.edu~garland/quadrics,1999.
  • 9Jonathan Cohen,Amitabh Varshney, Dinesh Manocha,Greg Turk,Hans Weber,Pankaj Agarwal,Frederick Brooks,William Wright.Simplification envelopes[A].Computer Graphics Proceedings,Annual Conference Series (Siggraph'96)[C].New York,1996.119-128.
  • 10Shaffer E.,Garland M..Efficient adaptive simplification of massive meshes.In:Proceedings of the IEEE Visualization 2001,San Diego,California,2001,127~134

共引文献20

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部