期刊文献+

蚁群优化算法求解TSP问题研究 被引量:2

Research on Ant Colony Optimization Algorithm Solving TSP
下载PDF
导出
摘要 介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以O liver30和att48为例给出了实验结果,说明了该混合算法的有效性。 The ant colony optimization of pheromone mixed rule is introduced, and is used to solve the traveling salesman problems(TSP). The ant colony optimization algorithm based on mixed pheromone update is modified based on ant colony system (ACS), in its evolutionary process, by use of changing the frequency of iterative optimization update rule and overall optimization update rule of the pheromone, gradually increases the frequency of overall update rule, to enhances the speed of convergence and the guidance of search, And takeing Oliver30 and att48 as example, the simulation results show the validity of this algorithm.
出处 《计算机与现代化》 2008年第7期85-87,共3页 Computer and Modernization
关键词 信息素 蚁群优化算法 蚁群系统 pheromone ant colony optimization ant colony system
  • 相关文献

参考文献14

  • 1Colomi A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proc 1st European Conf Artificial Life Plans. France: Elsevier, 1991 : 134-142.
  • 2Pinto J M, Grcasmarm I E. Assignment and sequencing model for scheduling models for the scheduling of process systems[ J ]. Annals of Operation Research, 1998 : ( 81 ) 433- 466.
  • 3Kirkpatrick S, Gelatt J C D, Vecchi M P. Optimization by simulated annealing [ J ]. Science, 1983,220 ( 4596 ) : 671- 680.
  • 4Dorigo M, GambardeUa L M. A study of some properties of Ant-Q[ C ]//Proc of the PPSⅣ 44th Int Conf Parallet Problem Solving from Nature. Berhn: Springer Verlag, 1996: 656-665.
  • 5Stutzle T, Hoos H H. MAX-MIN ant system [ J ]. Future Generation Computer Systems ,2000,16( 8 ) :889-914.
  • 6Gambardella L M, Dorigo M, An ant colony system, hybridized with a new local search for the sequential ordering problem[ J]. INFORMS J on Computing,2000,12 (3) : 237- 255.
  • 7Tsai C F, Tsai C W. A new approach for solving large traveling salesman problem using evolution ant rules [ C ]// Neural Networks,IJCNN 2002 ,Proc of the 2002 Int'l Joint Conf on Honolulu IEEE Press. 2002,2 : 1540-1545.
  • 8Dorigo M, Vittorio M, Alberto C. The ant system: optimization by a colony of cooperating agents [ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26(1) :1-13.
  • 9M Dorigo, L M GambardeUa. Ant colony system: a cooperative learning approach to the traveling salesman problem [J ]. IEEE Transactions on Evolutionary Computations, 1997,1 ( 1 ) :53-66.
  • 10L M GambardeUa, M Dorigo. Solving symmetric and asymmetric TSPs by colonies[ C ]//proceedings of the IEEE International Conference on Evolutionary Computation ( ICEC' 96), IEEE Press, 1996 : 622-627.

二级参考文献36

  • 1杨忠,鲍明,张阿舟.求解中国旅行商问题的新结果[J].数据采集与处理,1993,8(3):177-184. 被引量:10
  • 2周培德.求解货郎担问题的几何算法[J].北京理工大学学报,1995,15(1):97-99. 被引量:11
  • 3马良.多准则货郎问题及其算法.运筹学的理论与应用[M].西安:西安电子科技大学出版社,1996.187-192.
  • 4杨忠 鲍明 等.人机结合求解中国旅行商问题[J].模式识别与人工智能,1995,18(4):372-376.
  • 5Dorigo M, Caro G Di. Ant colony optimization: a new meta-heuristic [A]. Proc. 1999 Congress on Evolutionary Computation [C]. 1999-07, 1470-1477.
  • 6Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 1996, 26(1): 29-41.
  • 7Dorigo M, Caro G Di, Gambardella L M. Ant algorithms for discrete optimization [J]. Artificial Life, 1999, 5(2): 137-172.
  • 8Gambardella L M, Dorigo M. Ant-Q: a reinforcement learning approach to the traveling salesman problem [A]. Proc. 12th International Conference on Machine Learning [C]. Tahoe City, CA, 1995, 252-260.
  • 9Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [A]. Proc. IEEE International Conference on Evolutionary Computation [C]. 1996, 622-627.
  • 10Stützle T, Hoos H. The MAX-MIN ant system and local search for the traveling salesman problem [A]. Proc. IEEE International Conference on Evolutionary Computation [C]. 1997, 309-314.

共引文献196

同被引文献13

  • 1杜天军,陈光,刘占辰.多目标攻击空战决策WBG模型及其蚁群算法[J].系统工程与电子技术,2005,27(5):861-865. 被引量:15
  • 2付宇,肖健梅.动态自适应蚁群算法求解TSP问题[J].计算机辅助工程,2006,15(4):10-13. 被引量:5
  • 3Wang Ying,Xie Jian-ying.Ant colony optimization for multicast routing[C].Proceedings of the IEEE Asia-Pacific Conference on Circuits and Systems,Piscataway (NJ,USA):IEEE,2000.54-57.
  • 4T Stutzle,H Hoos.MAX-MIN Ant System and Local Search for the Traveling Salesman Problem.Proc[C].IEEE International Conference on Evolutionary Computation,1997-04:309-314.
  • 5S Thomas,H H Holger.Max-Min ant system[J].Future Generation Computer Systems,2000,16(8):889-2914.
  • 6M Dorigo,L M Gambardella.Ant colony system:A cooperative learning approach to the traveling salesman problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 7于竞婷.多目标对地序次攻击航路规划方法与仿真[D].西北工业大学,2009.
  • 8L M Gambardella,M Dorigo.Ant-Q:a reinforcement learning approach to the traveling salesman problem[C].Proceedings of the 12th International Conference on Machine Learning.Germany:IAML.1995.252-260.
  • 9李金汉,杜德生.一种改进蚁群算法的仿真研究[J].自动化技术与应用,2008,27(2):58-60. 被引量:9
  • 10鲁华,周德云.基于模糊多因素的对地多目标攻击战术规划研究[J].计算机工程与应用,2008,44(18):227-229. 被引量:3

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部