摘要
介绍了信息素混合更新的蚁群优化算法,并用来求解TSP问题。混合信息素更新的蚁群优化算法是在蚁群系统(ACS)的基础上改进而成的,它在演化过程中,通过改变信息素的迭代最优更新规则和全局最优更新规则的使用频率,逐渐增加全局最优更新规则的使用频率,从而提高系统收敛的速度和减少系统搜索的导向性,并以O liver30和att48为例给出了实验结果,说明了该混合算法的有效性。
The ant colony optimization of pheromone mixed rule is introduced, and is used to solve the traveling salesman problems(TSP). The ant colony optimization algorithm based on mixed pheromone update is modified based on ant colony system (ACS), in its evolutionary process, by use of changing the frequency of iterative optimization update rule and overall optimization update rule of the pheromone, gradually increases the frequency of overall update rule, to enhances the speed of convergence and the guidance of search, And takeing Oliver30 and att48 as example, the simulation results show the validity of this algorithm.
出处
《计算机与现代化》
2008年第7期85-87,共3页
Computer and Modernization
关键词
信息素
蚁群优化算法
蚁群系统
pheromone
ant colony optimization
ant colony system