期刊文献+

光照对水稻土中氧化铁还原的影响 被引量:14

EFFECT OF ILLUMINATION ON IRON OXIDE REDUCTION IN ANAEROBIC PADDY SOILS
下载PDF
导出
摘要 选择不同地区的水稻土样品,采用泥浆厌氧恒温培育方法,在避光和光照条件下,测定了培养过程中土壤泥浆的Fe(Ⅱ)浓度及叶绿素a含量的变化。结果表明:光合微生物的产氧作用是影响水稻土中铁还原的主要原因,而光照对铁还原微生物没有直接影响;光合微生物仅在某些水稻土中大量繁殖,其叶绿素a含量随着光照时间延长由逐渐增加到趋于稳定。通过微生物镜检和光谱分析发现,由天津和四川水稻土中分离的光合微生物主要是念珠蓝细菌(Nostocsp.)和鱼腥蓝细菌(Anabaenasp.),其吸收光谱曲线均具有664 nm的叶绿素a吸收峰,表明其具有利用光合系统Ⅱ进行产氧光合作用的特征。在厌氧培养过程中Fe(Ⅱ)浓度与土壤中叶绿素a含量变化有着明显的负相关关系。 Soil samples collected in paddy fields in Tianjin (TJ) , Sichuan (SC) , Jiangxi (JX) and Hunan (HN) provinces of China. The experiment was designed to have four levels of illumination, i.e. entire dark (D), light (L) and change from dark to light (D/L) and from light to dark (L/D) during anaerobic incubation of slurries prepared out of the paddy soil samples. Concentrations of Fe ( Ⅱ ) and chlorophyll a ( Chl a) were determined in the samples under incubation, to study effect of illumination on reduction of dissimilatory iron oxide. Results show that oxygen production of photosynthetic bacteria leads to oxidation of Fe( Ⅱ ) in paddy slurry under anaerobic incubation. Light does not affect iron-reducing bacteria. Photosynthetic bacteria reproduce massively only in some paddy soils, and Chl a content increases first with illumination going on, and then levels off. Anabaena sp. and Nostoc sp. of Cyanobacteria were identified respectively in TJ and SC soils, and both of these Cyanobacteria had the same Chl a absorption peak at 664nm, which suggests that oxygen production by photosynthesis Ⅱ occurred. A significant negative correlation was observed between Fe ( Ⅱ ) and Chl a content in the two calcareous paddy soils under anaerobic incubation.
出处 《土壤学报》 CAS CSCD 北大核心 2008年第4期628-634,共7页 Acta Pedologica Sinica
基金 国家自然科学基金项目(40271067) 西北农林科技大学创新团队项目共同资助
关键词 光照 铁还原 蓝细菌 叶绿素 水稻土 Illumination Iron reduction Cyanobacteria Chlorophyll α Paddy soil
  • 相关文献

参考文献30

  • 1Lovley D R. Dissimilatory Fe( Ⅲ ) and Mn ( Ⅳ) reduction. Microbiol. Rev. , 1991, 55:259 - 287
  • 2Lovley D R. Fe(Ⅲ) and Mn(Ⅳ) reduction. In: Lovley D R. ed. Environmental Metal-Microbe Interactions. Washington, D C, USA: American Society for Microbiology Press, 2000. 3 - 30
  • 3Roden E E, Sobolev D, Glazer B, et al. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface. Geomicrobiol. J. , 2004, 21:379-391
  • 4Straub K L, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. , 2001, 34:181 -186
  • 5Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe( Ⅲ ) and Mn(Ⅳ) reduction. Adv. Microb. Phys. , 2004, 49:219-286
  • 6Hanert H H. The genus Gallionella. In: Starr M P, Stolp H, Trueper H G, et al. eds. The Prokaryotes. Berlin: Springer, 1981. 509-515
  • 7Emerson D, Revsbech N P, Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Field studies. Appl. Environ. Microbiol., 1994, 60:4022-4031
  • 8Emerson D, Moyer C. Isolation and characterization of novel iron-oxldizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. , 1997, 63:4 784-4 792
  • 9Edwards K J, Rogers D R, Wirsen C O, et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic alpha-and, gamma-Proteobacteria from the deep sea. Appl. Environ. Microbiol., 2003, 69: 2 906 -2 913
  • 10Sobolev D, Roden E E. Characterization of a neutrophilic, chemolithoautotrophie Fe( Ⅱ )-oxidizing β-Proteobaeterium from freshwater wetland sediments. Geomierobiol. J., 2004, 21:1 - 10

二级参考文献36

  • 1Lovley D R,Woodward J C,Chapelle F H. Rapid anaerobic bezene oxidation with a variety of chelated Fe( Ⅲ ) forms[J]. Appl Environ Microbiol, 1996,62 : 288-- 291.
  • 2Lovley D R,Coates J D,Blunt-Harris E L,et al. Humic substances as electron acceptors of microbial respiration[J]. Nature, 1996,382:445-- 448.
  • 3Lovley D R, Phillips E J, Caccavo F J. Acetate oxidation by dissimilatory Fe ( Ⅲ ) reducers [J]. Appl Environ Microbiol, 1992,58 (9):3205--3208.
  • 4Schnell S,Ratering S. Simultaneous determination of iron( Ⅲ ),iron( Ⅱ ),and Manganese( Ⅰ ) in Environmemtal Samples by Ion Chromatography[J]. Envirn Sci Technol, 1998,32 : 1530-- 1537.
  • 5Liesack W,Schnell S, Peter N. Microbiology of flooded rice paddies[J]. FEMS Microbiology Reviews, 2000,24:625--645.
  • 6Jackel U,Schnell S. Suppression of methane emission from rice paddies by ferric iron fertilization[J]. Soil Biochemistry, 2000,32 : 1811 --1814.
  • 7Lovley D R. Microbial Fe ( Ⅲ ) reduction in subsurface environments [J]. FEMS Microbial Reviews, 1997,20:305--313.
  • 8Lovley D R,Woodward J C,Chapelle F H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe( Ⅲ ) ligands[J]. Nature,1994,370:128--131.
  • 9Achtnich C, Bak F, Conrad R. Competition for electron donors among nitratr reducers, ferric iron reducers, sulfate reducers,and methanogens in anoxic paddy soil. Biol Fertil Soils, 1995, 19 : 65 - 72.
  • 10Jaeckel U, Schnell S. Suppression of methane emission from rice paddies by ferric iron fertilization. Soil Biology & Biochemistry, 2000, 32:1 811 - 1 814.

共引文献73

同被引文献234

引证文献14

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部