期刊文献+

多柔体系统响应计算的子循环计算方法研究 被引量:2

STUDY ON SUB-CYCLING ALGORITHM FOR A FLEXIBLE MULTI-BODY SYSTEM
下载PDF
导出
摘要 过去近30年中,柔性多体系统动力学研究取得了巨大的进展,人们的兴趣集中在柔性多体系统建模、计算及实验研究等3个方面.Belytschko等于1979年提出的子循环算法已经成功地应用于结构动力响应的有限元计算中,然而有关柔性多体动力学的子循环算法研究尚未见报道.该文提出了一种适合于柔性多体系统响应计算的中心差分类子循环算法,在将非线性微分-代数混合方程组(DAEs)缩并为纯微分方程组(ODE)的基础上,推导出快、慢变分量的同步更新公式和子步更新公式;在变量的数值积分过程中,采用能量平衡计算检查算法的稳定性;算例结果表明该算法可以在保持合适的精度要求下,有效地提高响应的计算效率;对积分步长进行摄动修正可以保持算法的稳定性. Great developments have been made in the field of flexible multi-body system (FMS) with mod- eling, computational and experimental studies for nearly 30 years. The subcycling algorithms, which were firstly presented by Belytschko T. et al. in 1979, have been successfully applied in the structural dynamic analysis of FMS. However, subcycling algorithms for the FMS are still not presented up to now. This paper introduces a central difference method based sub-cycling algorithm for the FMS. First, common update for- mulae and sub-step update formulae for quickly changing variables and slowly changing variables of the FMS are established. Second, the nonlinear differential-algebraic equations are contracted to the original differential equations. Third, algorithm stability is validated with an energy balance computation during the integration procedure. Numerical results indicate that the sub-cycling algorithm is available to enhance the computational efficiency with appropriate computational accuracy. Furthermore, the algorithm stability can be determined by means of modifying the integral step sizes with the perturbation method.
出处 《力学学报》 EI CSCD 北大核心 2008年第4期511-519,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 中国电子科技集团总公司第十四研究所预研项目~~
关键词 柔性多体系统动力学 DAEs方程 中心差分法 子循环算法 能量平衡 稳定性分析 flexible multi-body dynamics, defferential-algebraic equations, central difference method, subcy- cling algorithm, energy balance, stability analysis
  • 相关文献

参考文献23

  • 1Negrut D, Ortiz JL. On an approach for the linearization of the differential algebraic equations of multibody dynamics. In: Proceedings of IDETC/MESA 2005, ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications. September 24-28, 2005, Long Beach, USA, DETC2005-85109
  • 2Negrut D, Ottarsson G. On an implementation of the hilber-hughes-taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. In: Proceedings of IDETC/MESA 2005, ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications. September 24-28, 2005, Long Beach, USA, DETC2005-85096
  • 3Gavrea B, Negrut D, Potra FA. The newmark integration method for simulation of multibody Systems: analytical considerations. In: Proceedings of IMECE 2005, ASME International Mechanical Engineering Congress and Exposition 2005. November 5-11, 2005, Orlando, USA, IMECE 2005-81770
  • 4Book WJ. Recursive lagrangian dynamics of flexible manipulator arms. Int J Robot Res, 1984, 3(3): 87-101
  • 5Changizi K, Shabana AA. A recursive formulation for the dynamics analysis of open loop deformable multibody systems. J of Appl Acoust, 1988, 55(3): 687-693
  • 6Bae DS, Hwang RS, Haug EJ. A recursive formulation for real-time dynamic simulation. Adv in Des Automation ASME, New York, 1988. 499-508
  • 7Amirouche FML, Xie M. Explicit matrix formulation of the dynamical equations for flexible multibody systems: a recursive approach. Comput Struct, 1993, 46(2): 311-321
  • 8Shabana AA, Hwang YL, Wehage RA. Projection methods in flexible multibody dynamics, Part I: Kinematics, Part II: Dynamics and recursive projection methods. Int J Numer Methods Eng, 1992, 35(10): 1927-1966
  • 9Hwang YL. Projection and recursive methods in flexible multibody dynamics. [Ph D Thesis]. Chicago: Dept of Mechanical Engineering, Univ of Illinois, 1992
  • 10Schaechter DB, Levinson DA. Interactive computerized symbolic dynamics for the dynamicist. J Astronaut, 1988, 36(4): 365-388

二级参考文献7

  • 1潘振宽,赵维加,洪嘉振,刘延柱.多体系统动力学微分/代数方程组数值方法[J].青岛大学学报(自然科学版),1996,9(1):83-96. 被引量:24
  • 2Belytschko T, Mullen R. Explicit integration of structural problems. In: Finite Elements in Nonlinear Mechanics,1997, 2:697~720.
  • 3Neal M O, Belytschko T. Explicit-explicit subcycling with non-integer time step ratios for structural dynamic systems.Comput. Struct., 1989, 31:871~880.
  • 4Belytschko T, Lu Y Y. An explicit multi-time step integration for parabolic and hyperbolic systems. In: New Methods Trans. Anal., PVP-Vol. 246/AMD-Vol, 143, ASME,New York, 1992, 25~39.
  • 5Daniel W J T. Analysis and implementation of a new constant acceleration subcycling algorithm. Int. J. Numer.Meth. Eng., 1997, 40:2 841~2 855.
  • 6Belytschko T, Lin I, Tsay. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl.Mech. Eng., 1984, 42:225~251.
  • 7Smolinski P, Belytschko T, Neal M. Multi-time-step integration using nodal partitioning. Int. J. Numer. Methods Eng.,1988, 26: 349~359.

共引文献22

同被引文献30

  • 1高晖,李光耀,钟志华,张维刚.汽车碰撞计算机仿真中的子循环法分析[J].机械工程学报,2005,41(11):98-101. 被引量:5
  • 2Woelke P, Abboud N, Tennant D, et al. Ship impact study: Analyt- ical approaches and finite element modeling. Shock and Vibration, 2012, 19(4): 515-525.
  • 3Xu HJ, Liu Y Q, Zhong W. Three-dimensional finite element simu- lation of medium thick plate metal forming and springback. Finite Elements in Analysis and Design, 2012, 5 1: 49-58.
  • 4Firat M, Karadeniz E, Yenice M, et al. Improving the accuracy of stamping analyses including springback deformations. Journal of Materials Engineering and Performance, 2013, 22(2): 332-337.
  • 5Behzad M, Alvandi M, Mba D, et al. A finite element-based algo- rithm for rubbing induced vibration prediction in rotors. Journal of Sound and Vibration, 2013, 332(21): 5523-5542.
  • 6Kacimi A E, Woodward P K, Laghrouche O, et al. Time domain 3D finite element modelling of train-induced vibration at high speed. Computers & Structures, 2013, 118:66-73.
  • 7Kim J, Kang S J, Kang BS. A comparative study of implicit and ex- plicit FEM for the wrinkling prediction in the hydroforming process. The International Journal of Advanced Manufacturing Technology, 2003, 22(7-8): 547-552.
  • 8Oliver J, Huespe AE, Cante JC. An implicit/explicit integration scheme to increase computability of non-linear material and con- tact/friction problems. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24): 1865-1889.
  • 9Cai Y, Li G, Wang H, et al. Development of parallel explicit finite el- ement sheet forming simulation system based on GPU architecture. Advances in Engineering Software, 2012, 45(1): 370-379.
  • 10Hadoush A, Boogaard AHVD. Efficient implicit simulation of incre- mental sheet forming. International Journal for Numerical Methods in Engineering. 2012.90(5): 597-612.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部