期刊文献+

均匀剪切流场中的强非线性波及其色散关系 被引量:4

Strongly nonlinear long waves with uniform shear flows and their dispersion relationship
下载PDF
导出
摘要 考虑了剪切流场中强非线性波,唯一的假设是水深与特征波长之比是小量,建立了基于任意水深处速度而不是通常所用的平均速度为速度变量的模型。不仅改进了色散关系,使模型的水深适用范围更大,而且由于整个推导过程对波的振幅没有做任何假设,因而所获得的模型可以用于任何振幅的波。 Long surface waves of finite amplitude with uniform shear flows are considered under the only assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocity at an arbitrary distance from the still water level as the velocity variable instead of the commonly used depth-averaged velocity. This significantly improves the dispersion properties, making them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model we got here can be used to describe arbitrary amplitude waves.
出处 《海洋科学》 CAS CSCD 北大核心 2008年第7期33-37,共5页 Marine Sciences
基金 中国科学院创新项目(KZCX2-YW-201) 教育部留学回国人员科研启动基金 内蒙古自然科学基金资助项目
关键词 剪切流 强非线性 色散关系 uniform shear flows strongly nonlinear dispersion relation
  • 相关文献

参考文献17

  • 1Boussinesq J. Theorie de 1' intumescence liquide appelee onde solitaire ou de translation, se propageant dans un canal rectangulaire [J]. Comptes Rengus de I' Aeademie des Sciences, 1871, 72: 755-759.
  • 2Whitham G B. Linear and nonlinear waves [M]. New York.. A Wiley-Interscience Publication, 1974.
  • 3Korteweg D J, de Vries G long waves advancing in a On the change of form of rectangular canal and on a new type of long stationary waves [J]. Philosophical Magazine, 1895, 39: 422-443.
  • 4Kadomtsev B B, Petviashvili V I. On the stability of solitary waves in weakly dispersing media [J]. Soviet PhysicsDoklady, 1970, 15: 539-541.
  • 5Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation [J]. Journal of Waterway, Port, Costal and Ocean Engineering, 1993, 119 (6) : 618-638.
  • 6Unna P J. Wave and tidal streams [J]. Nature, 1942, 149 : 219-220.
  • 7Longuet-Higgins M S, Stewart R W. Changes in form of short gravity waves on long waves and tidal currents [J]. Journal of Fluid Mechanics, 1960, 8: 565-583.
  • 8Longuet-Higgins M S, Stewart R W. The changes in amplitudes of short gravity waves on steady non-uniform currents [J]. Journal of Fluid Mechanics, 1961, 10 . 529-549.
  • 9Hughes B A, Stewart R W. Interaction between gravity waves and a shear flow [J]. Journal of Fluid Mechanics, 1961, 10: 385-402.
  • 10Whitham G B. Mass, momentum and energy flux in water waves [J]. Journal of Fluid Mechanics, 1962, 12: 135-147.

同被引文献39

  • 1冉政.对称性与激波捕捉中的非物理波动问题[J].力学季刊,2005,26(4):650-657. 被引量:2
  • 2Wooyoung Choi. Strongly nonlinear long gravity waves in uniform shear flows [J]. Phsical Review E,2003,68 (2) :299-305.
  • 3Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation [J]. Journal of Waterway, Port,Costal and Ocean Engineering, 1993,119 (6) : 618 - 638.
  • 4Wooyoung Choi. Fully nonliear internal waves in a two-fluid system [J]. Journal of Fluid Mechanics, 1999,396: 1-36.
  • 5Green A E,Naghdi P M. A derivation of equations for wave propagation in water of variable depth[J]. Journal of Fluid Mechanics, 1976,78 : 237-246.
  • 6Benjamin T B. Internal waves of finite amplitude and permanent form[J].Journal of Fluid Mechanics, 1966, 25:241-270
  • 7Benjamin T B. Internal waves of permanent form in fluids of great depth [J]. Journal of Fluid Mechanics, 1967, 29: 559-592.
  • 8Ono H. Algebraic solitary waves in stratified fluids[J]. Journal of the Physical Society of Japan, 1975, 39: 1 082-1 091.
  • 9Kubota T, Ko D R S, Dobbs L D. Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth[J]. AIAA Journal of Hydronauties, 1978, 12:157-165.
  • 10Benjamin T B. The solitary wave on a stream with an arbitrary distribution of vorticity[J]. Journal of Fluid Mechanics, 1962, 12: 97-116.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部