期刊文献+

基于Takagi-Sugeno模糊模型的小型无人直升机系统辨识 被引量:1

Modeling of Dynamic Characteristic of Small-Scale Robot Helicopter System via Takagi-Sugeno Fuzzy Identification
下载PDF
导出
摘要 提出了一种基于非线性系统模糊辨识建立小型直升机动力学特性模型的新方法,分析了小型直升机的4个舵机输入和位姿变量、运动变量的模型.设计实验采集和预处理得到辨识和验证所用的数据.通过辨识航向通道的动力学模型来说明模糊辨识在小型直升机建模中的可行性和有效性,并通过与最小二乘法辨识结果比较,表明该模糊辨识建模方法具有建模简单、模型精度高等优点.研究结果对小型直升机系统的建模和控制具有一定的实用价值. This paper introduced a new modeling method of small-scale robot helicopter based on fuzzy model identification. The model that includes four input and position variables, orientation variables, motion variables was analyzed. The experiment was designed for collecting the data to be used to identify and validate the model. Through modeling the yaw model, the feasibility and validity of fuzzy identification can be explained. By comparing the least square modeling method, the proposed fuzzy modeling method is found simple and accurate. It is applicable for modeling and controlling small-scale robot helicopter system.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第5期856-860,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60475039)
关键词 模糊模型辨识 无人直升机 系统辨识 T-S建模 fuzzy model identification robot helicopter system identification T-S modeling
  • 相关文献

参考文献5

  • 1Kim S K. Modeling, identification, and traiectory planning for a model-scale helicopter [D]. Michigan: The University of Michigan, 2001.
  • 2Mettler B. Modeling small-scale unmanned rotorcraft for advanced flight control design [D]. Pittsburgh: Carnegie Mellon University, 2001.
  • 3Kukolj D, Levi E. Identification of complex systems based on neural and Takagi-Sugeno fuzzy model [J]. IEEE Transactions on Syatems, Man, and Cybernetics. Part B: Cybernetics, 2004, 34(1):272-282.
  • 4Abonyi J, Babuska R, Szeifert F. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models [J]. IEEE Transactions on Syatems, Man, and Cybernetics. Part B: Cybernetics, 2002, 32 (5): 612-621.
  • 5蔡金师.飞行器系统辨识学[M].北京:国防工业出版社,2003.

共引文献2

同被引文献9

  • 1TAKAGI T, SUGENO M. Fuzzy identification of systems and its application to modeling and control [ J ]. IEEE Transaction on Systems, Man and Cybernetics, 1985, 15(1): 116-132.
  • 2SUGENO M, YASUKAWA T. A fuzzy-logic-based ap- proach to qualitative modeling [ J ]. IEEE Transaction oil Fuzzy Systems, 1993,1 ( 1 ) :7 - 31.
  • 3KANG S L, ZONG W G. A new structural optimization method based on the harmony search algorithm [J]. Computers & Structures,2004,82(9/10) : 781 -798.
  • 4LAZARO J, ARIAS J, MARTIN J L, et al. Implemen- tation of a modified Fuzzy C-Means clustering algorithm for real-time applications [ J ]. Microprocessors and Mi- crosystems ,2005,29 (8/9) : 375 - 380.
  • 5黄显林,宋清南,班晓军,等.一种基于和声搜索算法的T-S模型辨识方法[C]//第二十九届中国控制会议论文集.北京:中国自动化学会控制理论专业委员会,2010:1224-1229.
  • 6PARK M, JI S W, KIM E. A new approach to the iden- tification of a fuzzy model[ J ]. Fuzzy Sets and Systems, 1999, 104:169 - 181.
  • 7TAHERINEJAD N. Highly reliable harmony search al- gorithm [ C ]// European Conferenc, e on Circuit Theol;z and Design. Antalya: ECCTD, 2009:818 - 822.
  • 8HUNG Mingchuan, YANG Donlin. An efficient fuzzy C- means clustering algorithm [ C ]// IEEE International Conference on Data Mining. Piseataway: IEEE,2001: 225 - 232.
  • 9CHEN Musong, WANG Shinnwen. Fuzzy clustering analysis for optimizing fuzzy membership functions [ J ]. Fuzzy Sets and Systems, 1999,103:239 - 254.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部