摘要
文本知识挖掘是数据挖掘中一个很重要的研究领域。论文主要讨论如何在不使用概念换算方法下从文本知识中抽取概念格以及分析概念格之间的结构关联。该方法有两部分构成:一是将文本中所描述的对象转化为多值上下文;二是分析多值上下文之间的各种操作以及相应概念格之间的关联。重点分析了多值上下文的增加、删除和乘积等操作以及相应概念格之间的序嵌入映射,得到了一些重要命题。知识工程师可以利用这些命题进行文本知识分析以及从概念格上进一步抽取关联规则。
Text knowledge mining plays a very important role in data mining.In the paper,we mainly discuss how to extract concept lattices from different texts without using conceptual scaling and to analyze the structural connections among concept lattices.Our method consists of two parts:one is to trarisform the objects described in texts into many-valued contexts,and the other is to analyze some operations such as addition,deletion and product and the connections among concept lattices such as orderembedding map.We obtain some important propositions,which can be used by knowledge engineers to analyze text knowledge and to further extract associate rules from concept lattices.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第21期116-118,122,共4页
Computer Engineering and Applications
基金
山东省优秀中青年科学家奖励基金( the Promotional Foundation for Excellent Middle-aged or Young Scientists of Shandong Province under Grant No.2005BS01016)
山东省高校教学改革项目基金( the Foundation of Teaching Reformation of Higher Education of Shan-dong Province under Grant No.B05042)
关键词
文本知识
数据挖掘
多值上下文
形式概念
概念格
结构联通
text knowledge
data mining
many-valued contexts
fox,hal concepts
concept lattices
structural connections