期刊文献+

从文本知识源中挖掘概念格的形式分析 被引量:1

Formal analysis of concept lattice mining from textual knowledge sources.
下载PDF
导出
摘要 文本知识挖掘是数据挖掘中一个很重要的研究领域。论文主要讨论如何在不使用概念换算方法下从文本知识中抽取概念格以及分析概念格之间的结构关联。该方法有两部分构成:一是将文本中所描述的对象转化为多值上下文;二是分析多值上下文之间的各种操作以及相应概念格之间的关联。重点分析了多值上下文的增加、删除和乘积等操作以及相应概念格之间的序嵌入映射,得到了一些重要命题。知识工程师可以利用这些命题进行文本知识分析以及从概念格上进一步抽取关联规则。 Text knowledge mining plays a very important role in data mining.In the paper,we mainly discuss how to extract concept lattices from different texts without using conceptual scaling and to analyze the structural connections among concept lattices.Our method consists of two parts:one is to trarisform the objects described in texts into many-valued contexts,and the other is to analyze some operations such as addition,deletion and product and the connections among concept lattices such as orderembedding map.We obtain some important propositions,which can be used by knowledge engineers to analyze text knowledge and to further extract associate rules from concept lattices.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第21期116-118,122,共4页 Computer Engineering and Applications
基金 山东省优秀中青年科学家奖励基金( the Promotional Foundation for Excellent Middle-aged or Young Scientists of Shandong Province under Grant No.2005BS01016) 山东省高校教学改革项目基金( the Foundation of Teaching Reformation of Higher Education of Shan-dong Province under Grant No.B05042)
关键词 文本知识 数据挖掘 多值上下文 形式概念 概念格 结构联通 text knowledge data mining many-valued contexts fox,hal concepts concept lattices structural connections
  • 相关文献

参考文献8

  • 1Wille R.Fonnal Concept analysis as mathematical theory of concepts and concept hierarchies[C]//Ganter B.LNAI 3626:Formal Concept Analysis,2005 : 1-33.
  • 2Lei Yuxia,Wang Yan,Cao Baoxiang,et al.Concept interconnection based on many-valued context analysis[C]//Zhou Z H,Li H,Yang Q.LNAI 4426 :PAKDD 2007, Nanjing China, 2007 : 623-630.
  • 3Kim M,Compton P.Formal concept analysis for domain-specific document retrieval systems[C]//Brooks M,Corbett D,Stumptner M. LNAI 2256:2001:237-248.
  • 4Lei Y,Cao C,Sui Y.Acquiring military knowledge from texts in the electronic encyclopedia of China[C]//ICYCS'2001,Hangzhou, China, 2001,1 : 367-371.
  • 5Hahn U,Schnattinger K.Knowledge mining from textual sources[C]// Proceedings of the Sixth International Conference on Information and Knowledge Management,1997:83-90.
  • 6Mooney R J,Bunescu R.Mining knowledge from text using information extraction[J].SIGKDD Explorations,2005,7(1):3-10.
  • 7Chaveevan Pechsiri,Asanee Kawtrakul.Mining Causality for Explanation Knowledge from Text[J].Journal of Computer Science & Technology,2007,22(6):877-889. 被引量:4
  • 8Ganter B,Wille R.Fonnal concept analysis:mathematical foundations[M].[S.l.] : Springer, 1999.

二级参考文献18

  • 1Paul K Moser. The Oxford Handbook of Epistemology. Oxford University Press, New York, USA, 2002.
  • 2Girju R. Automatic detection of causal relations for question answering. In Proc. the 41st Annual Meeting of the Association for Computational Linguistics, Workshop on Multilingual Summarization and Question Answering-Machine Learning and Beyond, Sapporo, Japan, 2003, pp.76-83.
  • 3Chang D S, Choi K S. Causal relation extraction using cue phrase and lexical pair probabilities, In Proc. Int. Joint Conf. Natural Language Processing, Hainan Island, China, 2004, pp.61-70.
  • 4Marcu D, Echihabi A. An unsupervised approach to recognizing discourse relations. In Proc. the 40th Annual Meeting of the Association for Computational Linguistics Conference, Philadelphia, PA, 2002, 368-375.
  • 5Inui T, Inui K, Matsumoto Y. Acquiring causal knowledge from text using the connective markers. Journal of the Information Processing Society of Japan, 2004, 45(3): 919-933.
  • 6Torisawa K. Automatic extraction of commonsense inference rules from corpora. In Proc. The 9th Annual Meeting of the Association for Natural Language Proceeding, Japan, 2003, pp.318-321.
  • 7Carlson L, Marcu D, Okurowski M E. Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory. Current Directions in Discourse and Dialogue, Jan van Kuppevelt, Ronnie Smith (eds.), Kluwer Academic Publishers, 2003, pp.85-112.
  • 8Mitchell T M. Machine Learning. Singapore: The McGraw-Hill Companies Inc. and MIT Press, 1997.
  • 9Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines. Cambridge University Press, Cambridge, UK, 2000.
  • 10Glennan S S. Rethinking mechanistic explanation. Philosophy of Science, 2002, (69): 342-353.

共引文献3

同被引文献16

  • 1梁吉业,王俊红.基于概念格的规则产生集挖掘算法[J].计算机研究与发展,2004,41(8):1339-1344. 被引量:57
  • 2李云,刘宗田,陈崚,徐晓华,程伟.多概念格的横向合并算法[J].电子学报,2004,32(11):1849-1854. 被引量:50
  • 3Ganter B, Wille R.Formal concept analysis:mathematical foundations[M].[S.l.] : Springer, 1999.
  • 4Lei Yuxia.Normalized-scale relations and their concept lattices in relational databases[J].Fundamenta Informatieae, 2009,93 (4) : 393-409.
  • 5Huchard M, Hacene M R, Roume C,et al.Relational concept discovery in structured datasets[J].Ann Math Artif Intell,2007,49: 39-76.
  • 6Cimiano P, Hotho A, Staab S.Learning concept hierarchies from text corpora using formal concept analysis[J].Journal of Artifi- cial Intelligence Research,2005,24:305-339.
  • 7Carpineto C, Romano G.A lattice conceptual clustering system and its application to browsing retrieval[J].Machine Learning, 1996,24(2) :95-122.
  • 8Du Y J, Li H M, Liao Z W.The strategy of matching user queries with Web pages based on formal concept analysis[C]// Huang D S,Heutte L,Loog M.ICIC 2007,CCIS 2:489-498.
  • 9Tilley T, Cole R, Becker P, et al.A survey of formal concept analysis support for software engineering activities[C]//LNAI 3626: Ganter B.Formal Concept Analysis, 2005 : 250-271I.
  • 10Jiang F, Sui Y F, Cao C G.Formal concept analysis in relational database and rough relational database[J].Fundamenta Informaticae, 2007,80: 435-451.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部