期刊文献+

带野值的单类分类器在安全审计中的应用 被引量:1

Application of one-class classifier with negatives in security audit data analysis
下载PDF
导出
摘要 单类分类器是当前模式识别领域的一个研究热点。带野值的单类分类器是在单类分类器的基础上,通过引入少量珍贵的异常样本(野值),以加强分类器的性能。该模型适用于处理正类样本数目远多于反类样本的两类数据类别不平衡问题。提出了将带野值的支持向量描述方法应用于安全审计数据分析中,并通过实验证实了该方法对异常样本更为敏感,具有良好的应用潜力。 One-class classifier is currently a hot spot of pattern recognition field.One-class classifier with negatives is based on one-classifier,by leading into a few costful abnormal samples to reinforce the classification.This model applies to the problems handling the two kind data categories imbalances where positives more over than negatives.It is proposed in this paper that using support vector data description with negatives in security audit data analysis system.Through some experiinents,it is proved to be more sensitive with exceptional samples,so it will be more valuable in practice.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第21期154-156,共3页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.60603029) 江苏省自然科学基金( the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2005009)
关键词 单类分类器 支持向量数据描述 安全审计 one-class classifier support vector data description security audit
  • 相关文献

参考文献8

  • 1罗隽.基于单类分类器的网络应用行为入侵检测模型研究[D].南京:解放军理工大学,2007.
  • 2AAAI-2000 Workshop on "Learning from hnbalanced Data Sets"[C/OL].http://www.site.nottawa.ca/-nat/Workshop2000/workshop2000.html.
  • 3ICML'2003 Workshop on “Learning from Imbalanced Data Sets I-I”[C/OL].http://www.site.uottawa.ca/-nat/Workshop2003/workshop2003. html.
  • 4Chawla N V,Japkowicz N,Kolcz A.Editorial:Special issue on learning from imbalanced data sets[J].ACM SIGKDD Explorations, 2004,6( 1 ): 1-6.
  • 5SVDDayaji A,Hofmeyr S,Forrest S.Principles of a computer immune system[C]//Proceeding of New Security Paradigms Workshop, 1997:75-82.
  • 6Lee W,Stolfo S J,Mok K W.A data mining framework for build. ing intrusion detection models[C]//Proc the 1999 IEEE Symposium on Security and Privacy, Berkely, California, 1999:120-132.
  • 7David M J T.One-class Classification[D].1999.
  • 8David M J T.Support Vector data description[J].Machine Learning, 2004,54 : 45-66.

同被引文献15

  • 1潘志松,倪桂强,谭琳,胡谷雨.异常检测中单类分类算法和免疫框架设计[J].南京理工大学学报,2006,30(1):48-52. 被引量:5
  • 2LarryManevitz,Malik Yousef.One-class document classification via neural networks [J]. Neurocomputing, 2007,70 (7-9): 1466- 1481.
  • 3Zhang Yi,Wei Xueye,Jiang Haifeng.One-class classifier based on SBT for analog circuit fault diagnosis [J]. Measurement, 2008,41(4):371-380.
  • 4Giorgio Giacinto,Roberto Perdisci,Mauro Del Rio,et al.Intrusion detection in computer networks by a modular ensemble of oneclass classifiers[J].Information Fusion,2008,9(1):69-82.
  • 5Hoffmann H. Kernel PCA for novelty detection[J].Pattern Recognition,2007,40(3):863-874.
  • 6Adriano L I Oliveira,Flavio R G Costa, Clovis O S Filho.Novelty detection with constructive probabilistic neural networks [J]. Neurocomputing,2008,71 (4-6): 1046-1053.
  • 7Cecilia Surace,Keith Worden.Novelty detection in a changing environment:a negative selection approach[J].Mechanical Systems and Signal Processing,2010,24(4):1114-1128.
  • 8Thomas J Kindt,Richard A Clodsby, Barbara A Osbome.Kuby immtmology[M].6th ed.WH:Freeman and Company,2007.
  • 9Jungwon Kim,Peter J Bentley, Uwe Aickelin, et al.Immune system approaches to intrusion detection-a review[J].Natural Computing,2007,6(4):316-329.
  • 10Zhou Ji,Dipankar Dasgupta.Revisiting negative selection algorithms[J].Evolutionary Computation,2007,15(2):223-251.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部