摘要
单类分类器是当前模式识别领域的一个研究热点。带野值的单类分类器是在单类分类器的基础上,通过引入少量珍贵的异常样本(野值),以加强分类器的性能。该模型适用于处理正类样本数目远多于反类样本的两类数据类别不平衡问题。提出了将带野值的支持向量描述方法应用于安全审计数据分析中,并通过实验证实了该方法对异常样本更为敏感,具有良好的应用潜力。
One-class classifier is currently a hot spot of pattern recognition field.One-class classifier with negatives is based on one-classifier,by leading into a few costful abnormal samples to reinforce the classification.This model applies to the problems handling the two kind data categories imbalances where positives more over than negatives.It is proposed in this paper that using support vector data description with negatives in security audit data analysis system.Through some experiinents,it is proved to be more sensitive with exceptional samples,so it will be more valuable in practice.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第21期154-156,共3页
Computer Engineering and Applications
基金
国家自然科学基金( the National Natural Science Foundation of China under Grant No.60603029)
江苏省自然科学基金( the Natural Science Foundation of Jiangsu Province of China under Grant No.BK2005009)
关键词
单类分类器
支持向量数据描述
安全审计
one-class classifier
support vector data description
security audit