期刊文献+

基于实例加权方法的概念漂移问题研究 被引量:5

Study of example-weighted method for tracking concept drift
下载PDF
导出
摘要 数据流上的漂移概念发现已成为数据挖掘领域的研究热点之一。针对存在概念漂移的数据流分类问题,提出一种基于实例加权方法的数据流分类算法(EWAMDS),根据基分类器在训练实例上的分类结果调整该实例的权值,以增强漂移实例在新分类器中的影响,同时引入动态的权值修改因子以提高算法的适应性。实验结果表明,动态地调整实例的权值时算法的适应性更强;与weighted-bagging相比,EWAMDS的时间开销显著降低、分类正确率显著提高。 The tracking of drifting concept from data streams has recently become one of hot spots in data mining.In this paper, a Example-Weighted algorithm for mining data streams (EWAMDS) is proposed for data streams classification in the presence of concept drift,in which weight of train example is adjusted according to base classifier s prediction on it,so as to enhance influence of drifting examples in new classifier,and a dynamic weight modifying factor is introduced to improve the adaptability of this algorithm.The results of experiments indicate that modifying weight of example dynamically makes this algorithm more adaptively;and in comparison with weighted-bagging,EWAMDS has a lower time consumption and higher accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第21期188-191,共4页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.60573174) 安徽省自然科学基金( the Natural Science Foundation of Anhui Province of China under Grant No.050420207)
关键词 数据流 概念漂移 集成分类器 分类 data streams concept drifts ensemble classifier classification
  • 相关文献

参考文献12

  • 1Golab L,Ozsn M T.Issnes in data stream management[C]//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data,California USA,June 2003.New York:ACM Press, 2003,32(2) :5-14.
  • 2Zhu Yunyue,Shasha D.Efficient elastic burst detection in data streams[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data mining,Washington USA, August 2003.New York :ACM Press,2003,336-345.
  • 3Babcock B,Babu S,Datar M,et al.Models and issues in data stream systems[C]//Proceedings of 21st ACM Symposium on Principles of Database Systems,Madlson Wisconsin USA, 2002.New York:ACM Press,2002:1-16.
  • 4Domingos P,Hulten G.Mining high-speed data streams[C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Diseovery and Data mining,Boston USA,2000.New York: ACM Press, 2000: 71-80.
  • 5Hulten G,Spencer L,Domingos P.Mining time-changing data streams[C]//Proceedings of the 7th ACM SIGKDD International Conference on Kn,wledge Discovery and Data Mining,San Francisco USA, 2001.New Y,rk: ACM Press, 2001, 97-106.
  • 6Wang H,Fan Wei,Yu P,et al.Mining concept-drifting data streams using ensemble elassifiers[C]//Proceedings of 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington,August 2003.New York:ACM Press,2003:226-235.
  • 7Chu F,Zaniolo C.Fast and light boosting for adaptive mining of data streams[M].Berlin/Heidelberg:Springer, 2004:282-292.
  • 8Kolrer J Z,Marcus.A dynamic weighted majofity:a new ensemble method for tracking concept drift[C]//Proceedings of the 3rd IEEE Conference on Data Mining,Los Alamitos CA,Noventber 2003.CA: JEEE Press, 2003 : 123-130.
  • 9Kolter J Z,Maloof M A.Using additive expert ensembles to cope with concept drift[C]//Proceedings of the 22nd International Conference on Machine Learning, Bonn Germany, 2005.New York:ACM Press, 2005 : 449-456.
  • 10Zhu Xingquan, Wu Xingdong,Ying Yang.Dynamic classifier selection for effective mining from noisy data streams[C]//Proceedings of the 4th IEEE International Conference on Data Mining. Brighton UK, CA : IEEE Press, 2004 : 305-312.

同被引文献105

  • 1倪志伟,黄玲,李锋刚,忻凌.数据流管理与挖掘研究[J].合肥工业大学学报(自然科学版),2005,28(9):1157-1162. 被引量:5
  • 2王勇,李战怀,张阳,蒋芸.基于相反分类器的数据流分类方法[J].计算机科学,2006,33(8):206-209. 被引量:2
  • 3苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:387
  • 4Golab L,Ozsu M T. Issues in data stream management[J]. SIGMOD Rec, 2003,32 (2) : 5-14.
  • 5Supratik B, Sue M. Network performance monitoring and measurement=techniques and experience[C]//MMNS Tu torial, 2002 : 461 - 470.
  • 6Quinlan J R. Induction of decision trees[J]. Machine Learning, 1986,1 (1) : 81-106.
  • 7Quinlan J R. C4.5:programs for machine learning[M]. San Francisco, CA; Morgan Kaufmann Publishers Inc, 1993; 68-70.
  • 8Domingos P, Hulten G. Mining high speed data streams [C]//Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2000 : 71- 80.
  • 9Gama J, Rocha R, Medas P. Accurate decision trees for mining high speed data streams[C]//Proceedings of the 9th ACM SIGKDD International Conferece on Knowledge Discovery and Data Mining, 2003 : 523-528.
  • 10Breiman L. Random forests[J]. Machine Learning, 2001,45 (1):5-32.

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部