期刊文献+

一种基于假设检验的贝叶斯分类器 被引量:1

Bayesian classifier based on hypothesis testing
下载PDF
导出
摘要 分类是数据挖掘领域的重要分支,而贝叶斯分类方法作为分类领域的重要技术得到了日益广泛的研究和应用。限制性贝叶斯网络在不牺牲太多精确性的前提下简化网络结构,是近几年分类领域的研究热点。论文采用统计学中理论较成熟的体积假设检验(Volume Testing)方法寻找属性间的依赖关系,同时结合假设检验的思想和朴素贝叶斯分类算法的优点构造限制性贝叶斯网络,提出了一种基于假设检验的贝叶斯分类算法,并命名为基于体积检验的贝叶斯分类算法。在Weka系统下进行的实验,结果表明,这种方法效果优于朴素贝叶斯方法、TAN算法等,尤其对大数据集有更佳的表现效果。 Classification is a main branch in Data Mining field.Bayesian classifier as an important technology in this branch has been widely used.Restricted Bayesian learning is a hotspot in these years.In this paper,a kind of hypothesis testing,called volume test is used to find the dependency between attributes.Based on these,propose a method of Bayesian classifier based on hypothe- sis testing,we call it Bayesian classifier based on Volume Test(BVT).It absorbs advantages of Naive Bayes and idea of statistical hypothesis testing.Experiments show that this method outperforms Naive Bayes,TAN,etc,especially when the dataset is large.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第21期222-224,230,共4页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60673089)
关键词 假设检验 贝叶斯分类器 分类 机器学习 hypothesis testing bayesian classifier classification machine learning
  • 相关文献

参考文献11

  • 1Mitchell T M.Machine learning[M].New York:The McGraw-Hill Companies, Inc., 1997 : 154-199.
  • 2Friedman N,Geiger D,Goldszmidt M.Bayesian networks classifiers[J].Machine Learning, 1997(29) : 131-163.
  • 3Zheng Z,Webb G I.Lazy learning of Bayesian rules[J].Machine Learning.Boston: Kluwer Academic Publishers, 2000:1-35.
  • 4Keogh E J,Pazzani M J.Leaming augmented Bayesian classifiers:a comparison of distribution-based and classification-based approaches[C]//Proeeedings of the Seventh International Workshop on Artificial Intelligence and Statistics, Ft.Lauderdale, FL, 1999 : 225-230.
  • 5Webb G I,Boughton J R,Wang Zhihai.Not so naive bayes:aggregating one-dependence estimators[J].Machine Learning,2005,58:5-24.
  • 6Diaeonis P,Efron B.Testing for independence in a two-way table: new interpretations of the chi-square statistic[J].The Annals of Statistics, 1985,13 (3) : 845-874.
  • 7庄楚强,何春雄.应用数理统计[M].3版,广州:华南理工大学出版社,2006.
  • 8Witten I H,Frank E.Data mining practical machine learning tools and teehniques[M].Beijing:China Machine Press,2005.
  • 9Newman D J,Hettich S,Blake C L,et al.UCI Repository of machine learning databases[DB/OL].Irvine,CA:University of California, Department of Information and Computer Science, 1998.http:// www.ics.uci.edu/-mlearn/MLRepository.html.
  • 10Hastie T,Tibshirani R,Friedman J.The elements of statistical learning: data mining, inference, and prediction[M].New York : Springer, 2001.

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部