期刊文献+

基于自发脑电的脑机接口实验研究与设计 被引量:2

Experiment Research and Design for Brain Computer Interface Based on Spontaneous EEG
下载PDF
导出
摘要 针对基于自发脑电信号的脑机接口研究,设计了一种科学的且易实现的运动想象实验范例,利用运动想象脑电作为BCI的控制信号。该实验方案能有效地获得可识别的具有特征性的自发脑电电位,满足脑机接口实验要求,为BCI的研究提供了一种更加自然、更加实用的控制方式。 A scientific experiment of brain computer interface based on spontaneous EEG is designed, which is produced by motor imagination and used as the control signal, This design is easy to realize and can collect the identifiable spontaneous EEG which has some features after processed. It satisfies the requirements of BCI experiment and supplies a more native and practical control mode for BCI research.
出处 《测控技术》 CSCD 2008年第7期69-71,共3页 Measurement & Control Technology
基金 安徽省教育厅自然科学项目(2006KJ013C) 安徽建筑工业学院2006年硕博科研启动项目(20060701-16)
关键词 自发 脑电信号 脑机接口 运动想象 spontaneous EEG brain computer interface motor imaging
  • 相关文献

参考文献8

  • 1Guger C, Neuper C, Walterspacher D, Strein T and Pfurtscheller G. Rapid prototyping of an EEG-based brain-computer interface ( BCI ) [J]. IEEE Trans. Neural Syst. Rehab. Eng. ,2001,9 ( 1 ) :49 - 58.
  • 2Lal T N, Schroder M, Hinterberger T, Weston J and Bogdan M. Support vector channel selection in BCI [ J ]. IEEE Trans. Neural Syst. Rehab. Eng. ,2004,5(6) :1 003 -1 010.
  • 3Pfurtscheller G, Neuper C, Schlogl A and Lugger K. Separability of EEG signals recorded during fight and left motor imagery using adaptive autoregressive parameters [J]. IEEE Trans. Rehab. Eng. , 1998,6 (3) :316 -325.
  • 4Millan J. Adaptive brain interfaces[ A]. Commun. ACM. ,2003,46:74 - 80.
  • 5Millan J R and Mourino J. Asynchronous BCI and local neural classifiers: An overview of the adaptive brain interface project[J]. IEEE Trans. Neural Syst. Rehab. Eng. ,2003,11(2):159-161.
  • 6Schroeder M, Bogdan M, Rosenstiel W, Hinterberger T and Birhaumer N. Automated EEG feature selection for brain computer interfaces[A]. In Proc. 1st int. IEEE EMBS Conf. Neural Eng. ,2003:626-629.
  • 7Garrett D, Peterson D A, Anderson C W and Thaut M H. Comparison of linear,nonlinear,and feature election methods for EEG signal classification [ J 1. IEEE Trans. Neural Syst. Rehab. Eng. , 2003,11 ( 2 ) : 141 - 144.
  • 8Jeannerod M J. Mental imjagery in the motor context[ J ]. Neuropsy and Chologia, 1995,33( 11 ) :1 411.

同被引文献45

  • 1孙福立,徐世杰.禅修者前额脑电的慢节律变化特点[J].中国人体科学,1996,6(2):55-58. 被引量:2
  • 2Wolpaw JR,Birbaumer N,McFarland WJ.Brain-computer interface technology:A review of the first international meeting.IEEE Trans Rehabil Eng.2000;8(2):164-173.
  • 3Wang Y,Wang R,Gao X,et al.A practical VEP-based brain-computer interface.IEEE Trans Neural Syst Rehabil Eng.2006;14(2):234-239.
  • 4Hinterberger T,Schmidt S,Neumann N,et al.Brain-computer communication and slow cortical potentials.IEEE Trans Biomed Eng.2004;51(6):1011-1018.
  • 5Blankertz B,Dornhege G,Krauledat M.The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell.Proc.of the 3rd International Brain-Computer Interface Workshop and Training Course.2006:108-109.
  • 6Hochberg LR,Serruya MD,Friehs GM,et al.Neuronal ensemble,control of prosthetic devices by a human with tetraplegia.Nature.2006;442(13):164-171.
  • 7Hazrati MKh,Erfanian A.An online EEG-based brain-computer interface for controlling hand grasp using an adaptive probabilistic neural network.Med Eng Phys.2010;32(7):730-739.
  • 8Hammon PS,de Sa VR.Preprocessing and meta-classification for brain-computer interfaces.IEEE Trans Biomed Eng.2007; 54(3):518-525.
  • 9Ince NF,Goksu F,Tewfik AH,et al.Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface.Biomed Signal Proc Contr.2009;4:236-246.
  • 10Kayikcioglu T,Aydemir O.A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data.Patt Recogn Lett.2010;31:1207-1215.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部