期刊文献+

双向聚类迭代的协同过滤推荐算法 被引量:16

A Collaborative Filtering Recommendation Algorithm Based on Iterative Bidirectional Clustering
下载PDF
导出
摘要 协同过滤是电子商务推荐系统中广泛采用的技术,然而数据稀疏性会影响协同过滤的推荐质量。针对数据稀疏问题提出一种双向聚类迭代的协同过滤推荐算法,对初始得到的用户聚类和项目聚类进行交叉迭代调整,使得聚类簇达到较为稳定的状态。调整后聚类簇的内聚性更强,类之间的区分度更大。实验表明,在调整后的聚类簇中查找邻居将更加准确,可以有效解决数据稀疏问题的影响,有利于提高推荐的准确性。 Collaborative filtering is widely applied in E-Commerce recommendation system. However, data sparcity affects the accuracy of prediction and results in poor recommendation. To address this problem, a novel collaborative filtering algorithm is presented based on the iterative bidirectional clustering method. It works on the initial user clusters and the item clusters, adjusting the two groups of clusters into the stable status by the cross iteration so that the distances within the cluster are much smaller whereas the distances between the clusters are even bigger. The experiments illustrate that the adjusted clusters facilitate a more accurate neighbor search, indicating an efficient solution to the data sparcity and better recommendation quality.
出处 《中文信息学报》 CSCD 北大核心 2008年第4期61-65,74,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60663007) 江西省科技攻关项目(2006-184) 江西省教育厅科技项目(2007-129)
关键词 计算机应用 中文信息处理 协同过滤 聚类 交叉迭代 平均绝对偏差 computer application Chinese information processing collaborative filtering clustering cross iteration mean absolute error
  • 相关文献

参考文献9

  • 1Breese J. S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]//Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence. 1998. 43-52.
  • 2邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 3Sarwar B,'Karypis G, Konstan J, Riedl J. Item based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 4Gui-Rong Xue, Chenxi Lin, Qiang Yang. Scalable Collaborative Filtering Using Cluster-based Smoothing [C]//Proeeeding of the 28th Annual International ACM SIGIR Conference, in Salvador, Brazil, 2005.
  • 5Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems: A case study [C]//ACM WebKDD Web Mining for E- Commerce Workshop, 2000.
  • 6Ungar L. H, Foster D. P. Clustering Methods for Collaborative Filtering [C]//Workshop on Recommender Systems at the 15th National Conference on On Artificial Intelligence. 1998.
  • 7Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [C]//Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART. Symposium on Principles of Database Systems, 2001, 256-266.
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 9Gui Rong Xue, Hua-Jun Zeng. Optimizing Web Search Using Web Click-through Data [C]//CIKM' 04, November 8-13, Washington, DC, USA: 2004.

二级参考文献18

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献146

同被引文献135

引证文献16

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部