期刊文献+

量子群Uq(f(K))的局部有限子代数 被引量:1

Locally finite subalgebra of quantum group U_q(f(K))
下载PDF
导出
摘要 用U表示量子群Uq(f(K)),F(U)是U的局部有限子代数(即由量子伴随作用下局部有限的所有元素组成的U的子代数).利用量子群Uq(f(K))表示理论的基本结论,讨论其局部有限子代数F(U)的单子模形式、中心和单位群. Let U be quantum group Uq(f(K)), F(U) the locally finite subalgebra of U (i. e. , the subalgebra of U consisting of the elements on which the quantum adjoint action is locally finite). In this paper, the simple submodule, center and unit group of F(U) are discussed by using the representation theory of the quantum group Uq(f(K)).
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2008年第2期1-4,9,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10771182)
关键词 量子群 伴随表示 局部有限子代数 cluantum group adjoint action locally finite subalgebra
  • 相关文献

参考文献10

  • 1SWEEDLER M. Hopf algebra [M]. New York: Benjamin, 1969: 124-158.
  • 2JOSEPH A, LETZTER G. Local finiteness of the adjoint action for quantized enveloping algebra [J]. J Algebra, 1992, 153(2): 289-318.
  • 3JING N H, ZHANG J. Quantum Weyl algebras and deformations of U(G)[J].Pacific J Math, 1995, 171(2): 437-454.
  • 4SMITH S P. A class of algebras similar to the enveloping algebra of sl(2) [J]. Trans Amer Math Soc, 1990, 322(3): 285-314.
  • 5JI Q Z, WANG D G, ZHOU X Q. Finite dimensional representations of quantum groups Uq(f(K)) [J], East-West J Math, 2000, 2(2): 201-213.
  • 6TANG Xin. Constructing irreducible representations of quantum groups Uq(f(K)) [J/OL]. Glasgow Math J, 0610896: 1-18. (2007-03-09) [2007-11-06]. http://www. arxiv. org/math. RT/0610896.
  • 7LI Li-bin, ZHANG Pu. Weight property for ideals of Uq(sl(2)) [J]. Comm Alg, 2001, 29(11): 4853-4870.
  • 8戴丽,张洁,李立斌.量子群U_q(sl(2))的广义伴随作用[J].扬州大学学报(自然科学版),2004,7(1):1-4. 被引量:2
  • 9KASSEL C. Quantum groups, graduate texts in mathematics [M]. New York: Springer-Verlag, 1995.
  • 10ANDERSON H H, POLE P, WEN K. Representation of quantum algebras [J]. Invent Math, 1991, 104(2): 1-59.

二级参考文献5

  • 1[1]KASSEL C. Quantum groups [M]. NY: Springer-Verlag, 1995. 122~130
  • 2[2]TAKEUCHI M. Hopf algebra techniques applied to the quantum group Uq(sl(2)) [J]. Contemp Math, 1992, 134:309~323
  • 3[3]KULISH P P, RESHETIKHIN N Y. Quantum linear problem for the Sine-Gordon equation and higher representation [J]. J Soviet Math, 1983, 23:2435~2441
  • 4[4]SKLYANIN E K. On an algebra generated by quadratic relations [J]. Uspekhi Mat Nauk, 1985, 40:214
  • 5[5]LI L B. Quantum adjoint action for Uq(sl(2)) [J]. Alg Colloq, 2000, 7(4): 369~379

共引文献1

同被引文献9

  • 1查建国.量子包络代数U_q(_sl_2)的代数自同构[J].同济大学学报(自然科学版),1996,24(5):536-539. 被引量:1
  • 2JI Qing-zhong, WANG Ding-guo, ZHOU Xiang-quan. Finite dimensional representation of quantum groups Uq(f(K)) [J]. East-West J Math, 2000, 2(2):201-213.
  • 3WANG Ding-guo, JI Qing-zhong, YANG Shi-lin. Finite dimensional representation of quantum groups Uq (f(K, H)) [J]. Commun Algebra, 2002, 30(5).. 2191-2211.
  • 4TANG Xin. Constructing irreducible representations of quantum groups Uq (fm (K)) [J]. Front Math China, 2008, 3(3)~ 371-397.
  • 5LI Li-bin, YU Jie-tai. Isomorphisms and automorphisms of quantum groups [J/OL]. Math Quant Algebra, 2009 [2010-11-24]. http://arxiv, org/abs/0910. 1713, 2009.
  • 6ALEV J, CHAMARIE M. Derivations et automorphismes de quetques algebras quantiques [J]. Commun Algebra, 1992, 20(6): 1787-1802.
  • 7XI Nan-hua. A commutation formula for root vectors in quantized enveloping algebras [J]. Pac J Math, 1999, 189(1) :179-199.
  • 8LI Li-bin, ZHANG Pu. Weight property for ideals of Uq(sl(2)) [J].Commun Algebra, 2001, 29(11): 4853- 4870.
  • 9KASSEL C. Quantum groups [M]. New York.. Springer-Verlag, 1995: 121-134.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部