期刊文献+

The low-temperature mobility of two-dimensional electron gas in AlGaN/GaN heterostructures 被引量:1

The low-temperature mobility of two-dimensional electron gas in AlGaN/GaN heterostructures
下载PDF
导出
摘要 To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer. To reveal the internal physics of the low-temperature mobility of two-dimensional electron gas (2DEG) in Al- GaN/GaN heterostructures, we present a theoretical study of the strong dependence of 2DEG mobility on Al content and thickness of AlGaN barrier layer. The theoretical results are compared with one of the highest measured of 2DEG mobility reported for AlGaN/GaN heterostructures. The 2DEG mobility is modelled as a combined effect of the scat- tering mechanisms including acoustic deformation-potential, piezoelectric, ionized background donor, surface donor, dislocation, alloy disorder and interface roughness scattering. The analyses of the individual scattering processes show that the dominant scattering mechanisms are the alloy disorder scattering and the interface roughness scattering at low temperatures. The variation of 2DEG mobility with the barrier layer parameters results mainly from the change of 2DEG density and distribution. It is suggested that in AlGaN/GaN samples with a high Al content or a thick AlGaN layer, the interface roughness scattering may restrict the 2DEG mobility significantly, for the AlGaN/GaN interface roughness increases due to the stress accumulation in AlGaN layer.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第7期2689-2695,共7页 中国物理B(英文版)
基金 supported by the Key Program of the National Natural Science Foundation of China (Grant No 60736033) Xi’an Applied Materials Innovation Fund of China (Grant No XA-AM-200703) the Open Fund of Key Laboratory of Wide Bandgap Semiconductors Material and Devices,Ministry of Education,China
关键词 two-dimensional electron gas MOBILITY AlGaN/GaN heterostructures interface roughness two-dimensional electron gas, mobility, AlGaN/GaN heterostructures, interface roughness
  • 相关文献

参考文献22

  • 1Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117.
  • 2Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, Denbaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520.
  • 3Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J, Eastman L F, I)imitrov R, Wittmer L, Stutzmann M, Rieger W and Hilsenbeck 1999 Jpn. J. Appl. Phys. 85 3222.
  • 4Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334.
  • 5Miyoshi M, Egawa T and Ishikawa H 2005 J. Vac. Sci. Technol. B 23 1527.
  • 6Keller S, Parish G, Fini P T, Heikman S, Chen C H, Zhang N, DenBaars S P, Mishra U K and Wu Y F 1999 J. Appl. Phys. 86 5850.
  • 7Wu Y F, Keller B P, Fini P, Keller S, Jenkins T J, Kehias L T, Denbaars S P and Mishra U K 1998 IEEE Electron Device Lett. 19 50.
  • 8Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2003 Y. Vac. Sci. Technol. B 21 888.
  • 9Miyoshi M, Sakai M, Ishikawa H, Egawa T, Jimbo T, Tanaka M and Oda O 2004 J. Cryst. Growth 272 293.
  • 10Elsass C R, Poblenz C, Heying B, Fini P, Petroff P M, Denbaars S P, Mishra U K, Speck J S, Saxler A, Elhamrib S and Mitchel W C 2001 Jpn. J.Appl. Phys. Part 1 40 6235.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部