摘要
Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈ 40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaC10 solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc ≈ 40 K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35 K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40 K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.
Strontium and oxygen co-doped La1.937Sr0.063CuO4+δ superconductor with Tc≈ 40K, which is obtained by oxidizing strontium-doped starting ceramic sample La1.937Sr0.063CuO4 in NaC10 solution, is annealed under different conditions to allow interstitial oxygen to redistribute. The evolution of the intrinsic superconducting property with the oxygen redistribution is studied in detail by magnetic measurements in various fields. It is found that there occurs the electronic phase separation from the single superconducting phase with Tc ≈ 40 K into two coexisting superconducting states with values of Tc: 15 and 40K or of 15 and 35 K in this system, depending on annealing condition. Our results indicate that the 15, 35 and 40 K superconducting phases associated with the excess oxygen redistribution are all thermodynamically meta-stable intrinsic states in this Sr/O co-doped cuprate.
基金
supported by the State Key Development Program for Basic Research of China (Grant No 2006CB0L0302)
the National Natural Science Foundation of China (Grant No 10574149)
supported by European Union projectCoMePhS