期刊文献+

芯片上叉指电极介电电泳的模拟与实验研究 被引量:1

Simulation and Experimental Study of Dielectrophoresis in a Microfluidic Chip with Interdigitated Electrodes
下载PDF
导出
摘要 分析了影响常规介电电泳过程中粒子所受介电电泳力的因素和发生正、负向介电电泳的条件。经过合理的简化和假设,建立了一个芯片微通道中常规介电电泳的二维数学模型。数值计算结果给出了微通道中的电势和电场强度分布,并根据场强分布预测了粒子发生正向介电电泳时最容易被吸附的位置。利用微加工工艺,在硼硅酸(Pyrex)玻璃表面沉积了叉指型结构的复合金属电极,并用聚二甲基硅氧烷(PDMS)制作了具有微通道的盖片,两者键合形成芯片。以溶解有聚苯乙烯(polystyrene,PS)粒子的KCl溶液为操作悬浮溶液进行了粒子正向介电电泳实验,实验结果与理论分析具有较好的吻合。 The factors affecting the dielectrophoretic forces of the particles in conventional dielectrphoresis, as well as the conditions for the positive or negative dielectrophoresis were analyzed. A two dimensional mathematical model for the conventional dielectrophoresis in microchannels was developed through proper simplifications and assumptions. The numerical computation illustrates the distribution of electrical potential and electrical field, and predicts the positions where the particles of positive dielectrphoresis occurred are most likely to be adhered. A Pyrex glass/ PDMS microfluidic chip with the interdigitated electrode array on the glass wafer and the microchannel in the PDMS cover was fabricated, and the positive dielectrphoresis experiments of polystyrene beads in KCl solution were carried out. It is found that the experimental result agrees well with the numerical predication.
出处 《微纳电子技术》 CAS 2008年第7期397-402,共6页 Micronanoelectronic Technology
基金 国家自然科学基金重点项目(50536010) 上海交通大学机械与动力工程学院新进优秀青年教师科研启动经费
关键词 微流控芯片 常规介电电泳 微通道 叉指电极 数值分析 microfluidic chip conventional dielectrophoresis microchannel interdigitated microelectrodes numerical analysis
  • 相关文献

参考文献17

  • 1MEIKE K, CARSTEN B, TOBIAS P. High-throughput pro tein and DNA analysis based on microfluidic on-chip electrophoresis [J]. Journal of the Association for Laboratory Automation, 2005, 10 (5): 319-326.
  • 2NICHOLAS A C, SCOTT T B, MEINERS J C. Microfluidic chip for low-flow push-pull perfusion sampling in vivo with on-line analysis of amino acids [J]. Analytical Chemistry, 2005, 77 (21): 7067-7073.
  • 3SONG S S, ANUM K. On-chip sample preconcentration for integrated microfluidic analysis [J]. Analytical and Bioanalyrical Chemistry, 2006, 384 (1): 41-43.
  • 4XUAN X C, SINTON D, LID Q. Thermal end effects on electroosmotic flow in a capillary [J]. International Journal of Heat and Mass Transfer, 2004, 47 (14 - 16) : 3145 - 3147.
  • 5PETERSON N J, NIKOLAJSEN R H, MOGENSEN K B, et al. Effect of Joule heating on efficiency and performance for microchip-based and capillary based electrophoretic separation systems: a closer look [J]. Electrophoresis, 2004, 25 (2) : 253- 269.
  • 6CAO J, HONG F J, CHENG P. Numerical study of radial temperature gradient effect on separation efficiency in capillary electrophoresis [J]. Int Commu in Heat and Mass Transfer, 2007, 34 (9-10): 1048-1055.
  • 7RAMOS A, MORGAN H, GREEN N G, et al. AC electrokinetics: a review of forces in microelectrode structures [J]. Journal of Physics D: Applied Physics, 1998, 31 (18): 2340- 2353.
  • 8PHAM P, TEXIER I, LARREA A S, et al. Numerical design of a 3-D microsystem for bioparticle dielectrophoresis: the pyramidal microdevice [J]. Journal of Electrostatics, 2007, 65 (8): 511-520.
  • 9WALTI C, GERMISHUIZEN W A, TOSCH P, et al. AC electrokinetic manipulation of DNA [J]. J Phys D:Appl Phys, 2007, 40 (1): 114- 118.
  • 10DEMIERRE N, BRASCHLER T, LINDERHOLM P, et al. Characterization and optimization of liquid electrodes for lateral dielectrophoresis [J]. Lab Chip, 2007, 7: 355- 365.

同被引文献52

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部