期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
QUENCHING PROBLEM IN SOME SEMILINEAR WAVE EQUATIONS
被引量:
4
QUENCHING PROBLEM IN SOME SEMILINEAR WAVE EQUATIONS
下载PDF
职称材料
导出
摘要
This article proves a quenching result of the solutions for some semi-linear wave equations.
This article proves a quenching result of the solutions for some semi-linear wave equations.
作者
李明融
白仁德
机构地区
Department of Mathematics
Department of Land Economics
出处
《Acta Mathematica Scientia》
SCIE
CSCD
2008年第3期523-529,共7页
数学物理学报(B辑英文版)
关键词
Wave
equation
BLOW-UP
ESTIMATE
Wave equation, blow-up, estimate
分类号
O175.2 [理学—基础数学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
20
共引文献
0
同被引文献
3
引证文献
4
二级引证文献
3
参考文献
20
1
Adams R. Sobolev Spaces. Academic Press, 1978
2
Browder F E. On nonlinear wave equations. M Z, 1962, 80: 249-264
3
Haraux A. Nonlinear Evolution Equations-Global Behavior of Solutions. Lecture Notes in Math 841. Berlin: Springer, 1981
4
Jorgens K. Dan Anfangswert problem im GrotBen fur eine Klasse nichtlinearer Wellengleichungen. M Z, 1961, 77: 295-307
5
John F. Blow-up for quasilinear wave equations in three space dimensions. Comm Pure Appl Math, 1981, 36:29 -51
6
John F. Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math,1979, 28:235-268
7
John F. Delayed singularity formation in solutions of nonlinear wave equations in higher dimensions. Comm Pure Appl Math, 1976, 29:649-682
8
Klainerman S. Global existence for nonlinear wave equations. Comm Pure Appl Math, 1980, 33:43-101
9
Kato T. Quasilinear Equations of Evolution with Applications to PDE. Lecture Notes in Math 448. Berlin: Springer, 1975
10
Klainerman S, Ponce G. Global, small amplitude solutions to nonlinear evolution equations. Comm Pure Appl Math, 1983, 36:133-141
同被引文献
3
1
李明融.
BLOW-UP RESULTS AND ASYMPTOTIC BEHAVIOR OF THE EMDEN-FOWLER EQUATION u″=|u|~p[J]
.Acta Mathematica Scientia,2007,27(4):703-734.
被引量:2
2
Pai Jente,Chang Yueloong,Chiu Sumiao.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH A PARTICULAR EMDEN-FOWLER EQUATION[J]
.Acta Mathematica Scientia,2011,31(5):1749-1764.
被引量:2
3
张裕隆,李明融.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION FOR SOME ENTERPRISES[J]
.Acta Mathematica Scientia,2015,35(5):1014-1022.
被引量:1
引证文献
4
1
Pai Jente,Chang Yueloong,Chiu Sumiao.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH A PARTICULAR EMDEN-FOWLER EQUATION[J]
.Acta Mathematica Scientia,2011,31(5):1749-1764.
被引量:2
2
Meng-Rong LI,Yue-Loong CHANG,Yu-Tso LI.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION (Ⅱ)[J]
.Acta Mathematica Scientia,2013,33(4):1127-1140.
3
张裕隆,李明融.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION FOR SOME ENTERPRISES[J]
.Acta Mathematica Scientia,2015,35(5):1014-1022.
被引量:1
4
Yue-Loong CHANC,Meng-Rong LI,C. Jack YUE,Yong-Shiuan LEE,Tsung-Jui,CHIANG-LIN.
MATHEMATICAL MODEL FOR THE ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH A PARTICULAR EMDEN-FOWLER EQUATION u〞-n^(-q-1)u(n)~q=0[J]
.Acta Mathematica Scientia,2018,38(4):1311-1321.
二级引证文献
3
1
Meng-Rong LI,Yue-Loong CHANG,Yu-Tso LI.
A MATHEMATICAL MODEL OF ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH EMDEN-FOWLER EQUATION (Ⅱ)[J]
.Acta Mathematica Scientia,2013,33(4):1127-1140.
2
Yue-Loong CHANC,Meng-Rong LI,C. Jack YUE,Yong-Shiuan LEE,Tsung-Jui,CHIANG-LIN.
MATHEMATICAL MODEL FOR THE ENTERPRISE COMPETITIVE ABILITY AND PERFORMANCE THROUGH A PARTICULAR EMDEN-FOWLER EQUATION u〞-n^(-q-1)u(n)~q=0[J]
.Acta Mathematica Scientia,2018,38(4):1311-1321.
3
周子勇,李力.
Python语言在数学地质课程教学中的应用[J]
.创新教育研究,2020,8(6):884-890.
1
马玉兰,张改英.
二维空间上具缓减初值的半线性波动方程全局解的存在性[J]
.太原重型机械学院学报,1997,18(4):297-301.
2
马玉兰,杨复兴.
二维空间上一类半线性波动方程的爆破问题[J]
.应用数学,1997,10(2):53-56.
3
田应辉.
非线性边界条件下半线性波动方程解的爆破[J]
.四川师范大学学报(自然科学版),1999,22(5):525-529.
被引量:1
4
CUI Shangbin(Department of Mathematics, Lanzhou University, Lanzhou 730000, China).
POSITIVE SOLUTIONS FOR DIRICHLET PROBLEMS OF SINGULAR SEMILINEAR ELLIPTIC EQUATIONS[J]
.Systems Science and Mathematical Sciences,1995,8(3):203-208.
5
孙明岩,赵彦玲,冯国峰.
半线性波动方程在三维空间上径向解的Blow-up[J]
.大连交通大学学报,2007,28(3):4-7.
6
宫明艳,胡小龙,陈侠,牛梅,凤尔银.
Rovibrational quenching of BH in ultracold 3~He collisions[J]
.Chinese Physics B,2010,19(6):259-264.
7
张晓轶.
半线性波动方程的自相似解[J]
.数学学报(中文版),2005,48(6):1145-1154.
8
何玉芳,傅景礼,李晓伟.
The symmetries of wave equations on new lattices[J]
.Chinese Physics B,2010,19(6):26-31.
9
Mustafa Inc,Esma Ulutas,Anjan Biswas.
Singular solitons and other solutions to a couple of nonlinear wave equations[J]
.Chinese Physics B,2013,22(6):115-121.
被引量:1
10
冯红银萍,支霞,李胜家.
半线性波动方程的局部精确可控性[J]
.山西大学学报(自然科学版),2009,32(3):330-332.
Acta Mathematica Scientia
2008年 第3期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部