期刊文献+

基于可变阶模型的Web访问模式挖掘算法 被引量:1

Algorithm for Mining Web Navigation Patterns Based on Selective Models
下载PDF
导出
摘要 提出一种基于Markov的可变阶模型,综合了一阶Markov模型和高阶模型的新方法。该方法通过引入精度因子和所逼近模型的阶数,可以在保持与一阶Markov模型相当的较低复杂度的同时,使预测精度能够逼近高阶Markov模型。通过实验数据说明了所提出算法的正确性和有效性。 In this paper, a novel approach combining one-step Markov and k-step Markov model is proposed. Using precision factor and n-gram, the new algorithm can achieve high prediction precision that is close to M-step Markov model, while lower complexity is kept as the same as one-step Markov model.
作者 许国忠
出处 《三明学院学报》 2008年第2期204-207,共4页 Journal of Sanming University
关键词 可变阶模型 MARKOV Web个性化: Selective models Markov Web personalization
  • 相关文献

参考文献1

二级参考文献7

  • 1[1]Broder,A.Z.,Glassman,S.C.,Manasse,M.S.Syntactic clustering of the Web.Technical Report,1997-015,Palo Alto,CA:Digital Systems Research Center (Digital),1997.
  • 2[2]Chang,C.H.,Hsu,C.C.Customizable multi-engine search tool with clustering.Computer Network and ISDN Systems,1997,29(8-13):1217~1224.
  • 3[3]Chen,L.,Katya,S.Webmate:a personal agent browsing and searching.In:Sycara,K.P.,Wooldridge,M.,eds.Proceedings of the 2nd International Conference on Autonomous Agents.New York:ACM Press,1998.132~139.
  • 4[4]Ron,W.,Bienvenido,V.,Mark,A.S.,et al.Hypursuit:a hierarchical network search engine that exploits content-link hypertext clustering.In:ACM,ed.Proceedings of the 7th ACM Conference on Hypertext.New York:ACM Press,1996.180~193.
  • 5[5]Ackerman,M.,Billsus,D.,Gaffney,S.,et al.Learning probabilistic user profiles.AI Magazine,1997,18(2):47~56.
  • 6[6]Cheeseman,P.,Stutz,J.Bayesian classification (autoclass):theory and results.In:Fayyad,U.M.,Piatetsky-Shapiro,G.,Smyth,P.,et al.,eds.Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:AAAI/MIT Press,1996.153~180.
  • 7[7]Agrawal,R.,Srikant,R.Fast algorithm for mining association rules.In:Jorge,B.B,Matthias,J.,Carlo,Z.,eds.Proceedings of the 20th International Conference on Very Large Databases.Santiago:Morgan Kaufmann Publishers,Inc.,1994.487~499.

共引文献40

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部