摘要
根据猝变动力学的无混沌判据,具有■+a+b.x+mx+nx3=0形式的非线性系统,当呈现下列情况:(1)b≤0,或(2)a≥0,m≤0且n≤0,或(3)a≤0,m≥0且n≥0,或(4)n≤0且ab-m≥0,或(5)n≥0且ab-m≤0,或(6)m=0且n=0,无混沌行为.并用数值实验的结果验证了理论结论.
According to no-chaos criteria of jerky dynamics, nonlinear system given by x^…+ ax^- + bx + mx + nx^3 = 0 cannot exhibit chaotic behavior if any of the following conditions ( 1 ) b ≤ 0, or (2) a ≥ 0, m ≤ 0 and n ≤0, or (3) a ≤0, m ≥ 0and n ≥0 ,or (4) n ≤0andab - m≥0 ,or(5) n ≥0and ab - m ≤0 ,or (6) m = 0and n = 0- 0 is appeared. The numerical results verify the theoretic conclusions.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2008年第3期348-352,362,共6页
Journal of Jiangxi Normal University(Natural Science Edition)