期刊文献+

一个关于无约束最优化的Powell搜索法和微粒群算法的混合算法 被引量:5

A Hybrid Powell Search and Particle Swarm Optimization for Unconstrained Optimization
下载PDF
导出
摘要 该文提出一种求解无约束最优化问题新的混合算法——Powell搜索法和微粒群算法的混合算法.主要目的是通过加入混合策略证明标准微粒群算法是能够被改进的.仿真结果证明了新算法是求解无约束最优化问题的一个高效的算法. This paper proposes the hybrid Powell-PSO algorithm based on the Powell search method and particle swarm optimization for unconstrained optimization. The main purpose of the paper is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybrid strategy. As evidenced by the overall assessment based on computational experience, the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unconstrained optimization.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第3期368-371,共4页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 辽宁省自然科学版基金(2004F100)资助项目
关键词 POWELL搜索法 微粒群算法 无约束最优化 Powell search method particle swarm optimization unconstrained optimization
  • 相关文献

参考文献13

  • 1Shu-Kai S Fan, Erwie Zahara. A hybrid simplex search and particle swarm optimization for unconstrained optimization[J]. European Journal of Operational Research, 2007,181:527-548.
  • 2Nash S G, Sofer A. Linear and nonlinear programming[ M]. New York : McGraw-Hill, 1996.
  • 3Powell M J D. An efficient method for finding minimum of function of several variables without calculating derivatives[J]. Computer J, 1964(7) : 155-162.
  • 4Rosen J B, Mangasarian O L, Ritter K. Nonlinear Programming[ C]. New York: Academic Press, 1970.
  • 5Dundee. Numerical analysis, proceeding, biennial conference[C] .New York: Springer-Verlag, 1978,144-157.
  • 6Smith S. Proceedings of IEEE international conference on evolutionary computation[ C]. New York:Academic press, 1998.
  • 7Kennedy J, Eberhart R C. IEEE international conference on neural networks[ C]. New York: Academic press, 1995:1 942-1 948.
  • 8Shi Y, Eberhart R C. Proc IEEE int conf on evolutionary computation[ C]. USA:Anchorage, 1998:69-73.
  • 9Shi Y, Eberhart R C. Proc IEEE int congr evolutionary computation[ C]. Washington: IPHCC: 1 945-1 950.
  • 10Van den Bergh F. An analysis of particle swarm optimizer[ D]. South Mrica: University of Pretoria, 2001.

同被引文献32

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部