摘要
该文提出一种求解无约束最优化问题新的混合算法——Powell搜索法和微粒群算法的混合算法.主要目的是通过加入混合策略证明标准微粒群算法是能够被改进的.仿真结果证明了新算法是求解无约束最优化问题的一个高效的算法.
This paper proposes the hybrid Powell-PSO algorithm based on the Powell search method and particle swarm optimization for unconstrained optimization. The main purpose of the paper is to demonstrate how the standard particle swarm optimizers can be improved by incorporating a hybrid strategy. As evidenced by the overall assessment based on computational experience, the new algorithm has demonstrated to be extremely effective and efficient at locating best-practice optimal solutions for unconstrained optimization.
出处
《江西师范大学学报(自然科学版)》
CAS
北大核心
2008年第3期368-371,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
辽宁省自然科学版基金(2004F100)资助项目
关键词
POWELL搜索法
微粒群算法
无约束最优化
Powell search method
particle swarm optimization
unconstrained optimization