期刊文献+

激光熔注法制备WC颗粒增强金属基复合材料层 被引量:11

WC Particulate Reinforced Metal Matrix Composites Layers Produced by Laser Melt Injection
原文传递
导出
摘要 采用激光熔注(LMI)技术在Q235钢表面制备WC颗粒增强的金属基复合材料(MMC)层。在激光熔注工艺特性和熔注层宏观特征分析的基础上,采用X射线衍射(XRD)和扫描电镜(SEM)对激光熔注层微观组织结构进行了分析。结果表明,WC颗粒注入到熔池的整个深度和宽度范围内,并且在熔注层中的分布比较均匀。WC颗粒的加入改变了熔池的化学成分,熔注层中出现了新相Fe3W3C。在熔注层上部存在较多Fe3W3C枝晶和少量枝晶间共晶,在熔注层下部枝晶数量减少,共晶数量明显增多。激光熔注层中不同WC颗粒周围反应层的尺寸和形貌存在很大差别。WC颗粒注入位置是决定反应层尺寸的重要因素。 Laser melt injection (LMI) was used to produce WC particulate reinforced metal matrix composites (MMC) layers on Q235 steel. Based on the analysis of the LMI process characteristic and the maerostrueture of the MMC layer, the MMC layer was studied by X ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that WC particles can be injected into the whole region of the melted pool and distribute uniformly in the MMC layer. New phase of Fe3W3C is observed in the MMC layer due to the injection of WC particles. The microstructure of the MMC layer is quite complicated and can roughly be divided into two regions: the top part and the bottom part. The microstructure in the top part is characterized by many Fe3W3C dendrites surrounded by few interdendrite eut eeties, tn the bottom, the amount of Fe3W3C dendrites decreases while euteeties increase obviously. The size and morphology of reaction layers around different WC particles inside the MMC layer exhibit obvious difference. Moreover, the particle injection position plays a critical role in the thickness of the reaction layer.
出处 《中国激光》 EI CAS CSCD 北大核心 2008年第7期1083-1086,共4页 Chinese Journal of Lasers
关键词 激光技术 金属基复合材料 激光熔注 微观组织结构 laser technique metal matrix composites laser melt injection rnierostrueture
  • 相关文献

参考文献12

  • 1王文丽,晁明举,王东升,王征,梁二军.原位生成TaC颗粒增强镍基激光熔覆层[J].中国激光,2007,34(2):277-282. 被引量:24
  • 2李明喜,何宜柱,孙国雄.纳米Al_2O_3/Ni基合金复合材料激光熔覆层组织[J].中国激光,2004,31(9):1149-1152. 被引量:29
  • 3姚建华,张伟.激光熔覆镍包纳米氧化铝[J].中国激光,2006,33(5):705-708. 被引量:23
  • 4J. D. Ayers, T. R. Tucker. Particulate-TiC-hardened steel surfaces by laser melt injection [J]. Thin Solid Films, 1980, 73(1):201-207
  • 5J. D. Ayers. Modification of metal surfaces by the laser melt-particle injection process [J]. Thin Solid Films, 1981, 84(4):323-331
  • 6J. D. Ayers, R. J. Schaefer, W. P. Robey. A laser processing technique for improving the wear resistance of metals [J]. J. Met., 1981, 33(8):19-23
  • 7R. J. Schaefer, J. D. Ayers, T. R. Tucker. Surface hardening by particle injection into laser melted surface [P]. United State Patent, 1981, 10. 4299860
  • 8J. H. Abboud, D. R. F. West. Microstructure of titanium injected with SiC particles by laser processing [J]. J. Mater. Sci. Lett., 1991, 10(19):1149-1152
  • 9J. A. Vreeling, V. Ocelik, Y. T. Pei et al.. Laser melt injection in aluminum alloys: on the role of the oxide skin [J]. Acta Mater., 2000, 48(17):4225-4233
  • 10J. A. Vreeling, V. Ocelik, J. T. M. De Hosson. Ti-6Al-4V strengthened by laser melt injection of WCp particles [J]. Acta Mater., 2002, 50(19):4913-4924

二级参考文献33

共引文献66

同被引文献127

引证文献11

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部