期刊文献+

基于法布里-珀罗半导体激光器实现高重复频率光脉冲的时钟分频 被引量:2

Clock Division of High-Repetition Rate Optical Pulses from Fabry-Pérot Laser Diode
原文传递
导出
摘要 实验研究了重复速率为6.32 GHz的光脉冲注入法布里-珀罗(Fabry-Pérot)半导体激光器实现3.16 GHz光脉冲输出的时钟分频现象,讨论了Fabry-Pérot半导体激光器的偏置电流、注入光功率、注入光光谱以及光谱线宽等因素对时钟分频的影响。利用光注入半导体激光器产生的周期二振荡非线性动力学特性,实现了高重复速率光脉冲的时钟分频。研究表明,当注入光的光谱较窄且锁定Fabry-Pérot半导体激光器某一纵模时,在较低的偏置电流和一定的注入光功率时,时钟分频才能发生。采用半导体激光器的速率方程,通过数值模拟,研究了半导体激光器的偏置电流和线宽增强因子以及注入光功率对时钟分频的影响,所得结果与实验结果相吻合。 The high-repetition rate optical pulses clock division is investigated based on the nonlinear dynamics of optically injected Fabry-Perot semiconductor laser. A train of 6.32 GHz injected optical pulses divided into 3.16 GHz is obtained. Effects of the bias current of laser diode, the injected optical power, and injected optical spectrum etc. on the clock division, has been analyzed. The high-repetition rate optical pulses clock division is realized with the periodically oscillated nonlinear dynamics in optically injected F-P laser diode. The clock division will occur when the injected pulse spectral width is narrow, a certain longitudinal mode of the F-P laser diode is locked, and the conditions of low bias current and appropriate injected optical power are met. In addition, the effect of the laser bias currents, linewidth enhancement factor, and injected optical power on clock division is numerically investigated. Numerical simulations are consistent well with the experimental results.
出处 《光学学报》 EI CAS CSCD 北大核心 2008年第7期1236-1240,共5页 Acta Optica Sinica
基金 国家自然科学基金(60577019)资助项目
关键词 光纤通信 光时分复用 半导体激光器 光注入 时钟分频 optical fiber communication optical time division multiplexing laser diode optical injection clock division
  • 相关文献

参考文献8

二级参考文献73

共引文献26

同被引文献49

  • 1武保剑.磁光Bragg衍射中的相位失配分析[J].物理学报,2006,55(6):3095-3099. 被引量:7
  • 2于晋龙,王耀天,张爱旭,张艳冬,朱利凯,李亚男,胡浩,王文睿,王卓然,吕捷,王新兵,张立台,杨恩泽.40 Gb/s信号全光3R再生实验[J].光学学报,2007,27(5):801-806. 被引量:21
  • 3郑宏军,刘山亮,黎昕,徐静平.超高斯光脉冲自相关特性[J].中国激光,2007,34(7):908-914. 被引量:6
  • 4Xiaowei Chen, Zhinan Zeng, Jun Liu. Self-compression of loosely focused pulse in gases with power close to self-focusing critical value[J]. Chin. Opt. Lett., 2007,5:S159-S162.
  • 5J. H. Collins, E. G. H. Lean, and H. J. Shaw. Pulse compression by Bragg diffraction of light with microwave sound [J]. Appl. Phys. Lett. , 1967, 11(3):240-242.
  • 6S. A. Nikitov, Yu. V. Gulyaev, V. I. Pustovoit. Opticalmagnetostatic spin wave interaction in a ferromagnetic waveguide[J]. Opt. Commun., 1997, 138(1-3):55-58.
  • 7Wu Baojian, Wen Feng, Qiu Kun. Mode-conversion enhancement of guided optical waves by magnetostatic surface waves propagating collinearly in obliquely magnetized bismuth- doped yttrium-iron-garnet film waveguide[J]. J. Appl. Phys. , 2006, 100(12) :123104.
  • 8C. S. Tsai, D. Young. Magnetostatic-forward-volume-wave based guided-wave magneto-optic Bragg cells and applications to communications and signal processing[J]. IEEE Trans. Microw. Theory, 1990, 38(5):560-570.
  • 9D. Young, C. S. Tsai. Bismuth-doped yttrium iron garnet guided wave magnetooptic Bragg cells and applications [J]. Ultrasonics Symposium, Proc. IEEE, 19 8 9, 1 : 5 21- 5 2 3.
  • 10S. A. Nikitov. Nonlinearity: magneto-optic-microwave interactions. Towards new devices [ J ]. J. Magn. Magn. Mater. , 1999,196(1-3) :400-403.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部