期刊文献+

多子群协同链式智能体遗传算法分析 被引量:1

Analysis of multi-population co-genetic algorithm for global numerical optimization
下载PDF
导出
摘要 针对遗传算法(genetic algorithm,GA)易出现搜索效率不高和早收敛现象,提出了一种多子群协同链式智能体遗传算法(multi-population agent genetic algorithm,MPAGA)。该算法采用多子群并行搜索模式、链式智能体结构,引入动态邻域竞争和正交交叉等策略,有效提高了算法性能。采用3个复杂多峰测试函数对算法进行优化性能测试结果表明,MPAGA比普通智能体遗传算法有较快的收敛速度,能有效防止早收敛现象。 In order to improve the low optirnization efficiency and the premature convergence of genetic algorithms (GA), a multi population agent co genetic algorithm with a chain-like agent structure (MPAGA) was developed. Thi,s algorithm adopted a rnuhi-population parallel searching mode, a chain-like agent structure, dynamic neighborhood competition, and an orthogonal crossover strategy. Three functions were used to test this algorithm. The experimental results show that MPAGA obtains higher optimization precision and converges to the dornain close to global optima with higher speeds than other improved GAs.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第7期781-785,共5页 Journal of Chongqing University
基金 国家自然科学基金资助项目(30570473)
关键词 遗传算法 多子群 智能体 链式网络结构 genetic algorithm rnuhi population agent chain like agent structure
  • 相关文献

参考文献15

  • 1SRINIVAS M. PATNAIK L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 2,1(4):656-667.
  • 2ZHONG W C, LIU J, JIAO L C. A multi-agent genetic algorithm for global numerical optimization [J]. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics,2004,34(2) :1128-1141.
  • 3孙晓燕,巩敦卫.变种群规模合作型协同进化遗传算法及其在优化中的应用[J].控制与决策,2004,19(12):1437-1440. 被引量:7
  • 4HONG J H, CHO S B. Efficient huge-scale feature selection with speciated genetic algorithm [J]. Pattern Recognition Letters,2006,27(2): 143-150.
  • 5DOAN S, HORIGUCHI S. An efficient feature selection using multi-criteria in text categorization [J]. IEEE Computer Society, 2004 ( 11 ): 86-91.
  • 6CLUNEJ,GOINGSS,PUNCH B,et al. Investigations in meta-GAs:pananceas or pipe dreams? [C]// Proc of Workshop on Genetic and Evolutionary Computation, June 25-29, 2005, washigton, D.C. USA. New York: ACM Press,2005 :235-241.
  • 7JUANG C F,LIOU Y C. A hybrid of genetic algorithm and particle swarm optimization for recurrent network design [ J ]. IEEE Transactions on Evolutionary Computation, 2004,8 ( 3 ) : 240-255.
  • 8ZHANG J, CHUNG H S H, HUB J. Adaptive probabilities of crossover and mutation in genetic algorithms based on clustering technique [C]// Proceeding of tile 2004 Congress on Evolutionary Computation, June 19-23, 2004, Portland, OR, United states. New York: Institute of Electrical and Electronics Engineers Inc, 2004 : 2280-2287.
  • 9袁晓辉,曹玲,夏良正.Adaptive genetic algorithm with the criterion of premature convergence[J].Journal of Southeast University(English Edition),2003,19(1):40-43. 被引量:9
  • 10LEUNG Y W , WANG Y. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation,2001,5(1) :41-53.

二级参考文献3

  • 1Mitchell A Potter, K A De Jong. Cooperative coevolution: An architecture for evolving coadapted subcomponents [J]. IEEE Trans on Evolutionary Computation,2000,8(1): 1-29.
  • 2Mitchell A Potter. The design and analysis of computational model of cooperative coevolution [D]. Virginia:Geroge Mason University, 1997.
  • 3N Garcia-Pedrajas, C Hervas-Martinez, J MumozPerez. Multi-objective cooperative coevolution of artificial neural networks [J]. Neural Networks, 2002: 1259-1278.

共引文献14

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部