摘要
本文以构造性方法证明:当8×2n^2型偏差分对称矩阵满足适当条件时,其元素之集可构成4n(n≥1)阶泛对角线幻方。构成二维等差矩阵的数集及由1,2,…,16n^2构成的数集仅是该种数集的特例。
This paper amis to establish a general method for pandiagonal magic square of order 4n. It is shown that when a8×2n^2 matrix A with symmetric partial difference in each direction satisfies d_1^(1) =d_3^(1),d_1^(2) =d_2^(2) = … =d_(2n^2-1)^(2) =d. Apandiagonal magic square of order 4n can always be constructed with elements of A. Number sets which consists of e1-ements of double equidfference matrix and natural numbers of series 1, 2, …, 16n^2 are special cases of the above condi-tion.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
1990年第3期70-73,共4页
Journal of Henan Normal University(Natural Science Edition)
关键词
泛对角线幻方
二维等差矩阵
数集
pandiagonal magic square
double equidifference matrix
matrix with symmetric partial difference in each direction