摘要
研究洛伦兹空间型S1^5中的Ⅱ型洛伦兹等参超曲面,给出了S1^5中最小多项式为λ^2的洛伦兹等参超曲面-↑M的解析表达式.证明了这种超曲面-↑M局部的被三个一元函数C1(t),C2(t),C3(t)所唯一确定,并且S1^5中任何Ⅱ型洛伦兹等参超曲面局部地与最小多项式为λ^2的某个洛伦兹等参超曲面-M的平行超曲面叠合.
In the paper, the isoparametric hypersurfaces in the Lorentzian sphere S1^5 are studied. It is proved that any Lorentzian isoparametric hypersurfaceof type Ⅱ in S1^5 is locally congruent to a parallel hypersurface of a Lorentzian isoparametric -↑M with minimal polynomial λ^2, and -↑M is determined uniquely by three functions C1(t), C2(t) and C3(t). Lorentzian isoparametric hypersurface -↑M with minimal polynomial λ^2 in S1^5 the analytic expression is given.
出处
《南昌工程学院学报》
CAS
2008年第3期1-8,共8页
Journal of Nanchang Institute of Technology
基金
国家自然科学基金资助项目(10671087)
江西省自然科学基金资助项目(511075)
关键词
洛伦兹空间型
洛伦兹超曲面
等参超曲面
lorentzian space form
lorentzian hypersurface
isoparametric hypersurfaces