期刊文献+

基于ICA优化空间信息PCM的SAR图像分割 被引量:4

SAR Image Segmentation Combining Possibilistic C-Means Clustering and Spatial Information Optimized with Immune Clonal Algorithm
下载PDF
导出
摘要 可能性C-均值(PCM)聚类算法提高了数据聚类的抗噪性能,但由于这种算法没有考虑数据的空间依赖特性,应用于合成孔径雷达(SAR)图像分割时,受SAR图像中斑点噪声的影响,通常不能得到正确的分割结果。该文在PCM目标函数中引入空间相对位置信息和多尺度空间像素强度信息,这些空间信息取值由前次迭代优化的聚类结果确定,空间信息影响程度(影响因子)由免疫克隆算法(ICA)优化,实现了空间信息影响因子的自适应调整,优化了PCM聚类结果。实验将这种算法应用于人工合成图像和实际SAR图像的分割,结果表明该文所提出的算法对初始分割不敏感,具有强的抗噪性能,改善了SAR图像的分割效果。 Possibilistic C-Means (PCM) clustering algorithm exhibits the robustness to noise, but the spatial information is not considered in this algorithm. Due to the effect of speckle in Synthetic Aperture Radar (SAR) images, the serious inaccuracies with segmentation can be resulted by using the PCM algorithm. A robust segmentation algorithm based on an extension to the traditional PCM algorithm is proposed in this paper. The relative location information and intensity information of neighboring pixels are introduced into the objection function of the PCM algorithm. The values of these information are determined by previous clustering result. The degree of influence of these information on clustering is optimized with Immune Clonal Algorithm (ICA), so the degree of influence is adjusted adaptively. Meanwhile, the clustering results of the PCM algorithm are optimized. In the paper, synthetic image and real SAR images are segmented to demonstrate the superiority of the proposed algorithm. The experimental results show that the proposed algorithm is insensitive to the initial segmentation result and improves the segmentation performance dramatically.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第7期1751-1755,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60673097 60703109) 国家部委科技资助项目(A1420060172 51307040103)资助课题
关键词 SAR图像分割 PCM聚类 平稳小波变换(SWT) 免疫克隆算法(ICA) Synthetic Aperture Radar (SAR) image segmentation Possibilistic C-Means (PCM) clustering Stationary Wavelet Transform (SWT) Immune Clonal Algorithm (ICA)
  • 相关文献

参考文献9

  • 1Shen S, Sandham W, and Granat M, et al.. MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans. on Information Technology in Biomedicine, 2005, 3(9): 459-467.
  • 2Petrosino A and Salvi G. Rough fuzzy set based scale space transforms and their use in image analysis. International Journal of Approximate Reasoning, 2006, 41(2): 212-228.
  • 3Krishnapuram R and Keller J. A possibilistic approach to clustering [J]. IEEE Trans. on Fuzzy Systems, 1993, 1(2): 98-110.
  • 4Krishnapuram R and Keller J. Correspondence‘The possibilistic c-means algorithm': Insights and recommendations [J]. IEEE Trans. on Fuzzy Systems, 1996, 4(3): 385-393.
  • 5Sowmya B and Bhattacharya S. Colour image segmentation using fuzzy clustering techniques. IEEE Indicon 2005 Conference, Chennai, India, 2005: 41-45.
  • 6Tolias Y A and Panas S M. On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system. IEEE Signal Processing Letters, 1998, 5(10): 245-247.
  • 7Dulyakarn P and Rangsanseri Y. Fuzzy c-means clustering using spatial information with application to remote sensing [A]. The 22nd Asian Conference on Remote Sensing [C], Singapore, 2001: 5-9.
  • 8Schneider A. Weighted possibilistic clustering algorithms. The 9th IEEE International Conference on Fuzzy Systems, Texas, 2000, 1: 176-180.
  • 9焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224

二级参考文献58

  • 1戴汝为,王珏.关于智能系统的综合集成[J].科学通报,1993,38(14):1249-1256. 被引量:52
  • 2戴汝为,王珏.巨型智能系统的探讨[J].自动化学报,1993,19(6):645-655. 被引量:39
  • 3陆德源.现代免疫学[M].上海:上海科学技术出版社,1998.14-16.
  • 4学科交叉和技术应用专门小组(美).学科交叉和技术应用[R].北京:科学出版社,1994.43.
  • 5M N O Sadiku. Artificial Intelligence [ J ]. IEEE Potentials, 1989, 8(2) :35 - 39.
  • 6R J Patton, C J Lopez-Toribio, F J Uppal. Artificial intelligence approaches to fault diagnosis[ A]. IEE Colloquium on Condition Monitoring :Machinety, External Structures and Health (Ref. No. 1999/034)[ C]. London:The Institute of Electrical Eagineers, 1999.5/1 - 5/18.
  • 7R Orwig, H Chen, D Vogel, et al. A multi-agent view of strategic planning using group support systems and artificial intelligence [J]. Group Decision and Negotiation, 1997,6( 1 ) : 37 - 59.
  • 8A Christopher, Welty, G Peter, Selfridge. Artificial intelligence and software engineering: Breaking the toy mold [ J ]. Automated Software Engineering. 1997,4(3) :255 - 270.
  • 9Donald Gillies. Book review: Artificial intelligence and scientific method [ J]. Journal of Intelligent and Robotic Systems. 1998,22( 1 ) :87-95.
  • 10G Sartor, L Karl Branting. Introduction: Judicial Applications of artificial intelligence [J]. Artificial Intelligence and Law, 1998,6(24) : 105- 110.

共引文献223

同被引文献47

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部