期刊文献+

一种自适应特征选择的运动目标实时跟踪算法 被引量:3

An Adaptive Feature Selecting Real-time Moving Object Tracking Algorithm
下载PDF
导出
摘要 提出自适应特征选择算法,利用背景信息及目标信息建立特征分类器,并在跟踪过程中不断更新特征分类器;提出采用光流算法对运动区域进行粗预测,然后利用特征分类器及meanshift算法对目标进行跟踪.实验结果表明,该算法可以根据不同的背景信息自适应的选择特征,对于跟踪过程中存在形变、遮挡以及背景出现干扰或光照变化等情况,依然可以对目标进行稳定的实时跟踪. The paper proposed an adaptive features selecting algorithm. Features classifiers are constructed utilizing object information and background information, and updated during tracking. Optic-flow model is used to predict motion area roughly, and then object is tracked by utilizing clssifiers and Meanshift algorithm. The experiment result shows that the tracking algorithm we proposed can adaptively select features for tracking utilizing different background information, in the existence of covering, appearance changed, clutter in the background and illumination changing, we can still track objects stably and in realtime.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第7期1324-1328,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金重大项目(79816101)资助 湖南省自然科学基金项目(05JJ30121)资助
关键词 运动目标实时跟踪 自适应特征选择 分类器 光流算法 real-time object tracking adaptive features select classifier optic-flow algorithm
  • 相关文献

参考文献12

  • 1Satoh, Yoshinori. A color-based tracking by Kalman particle filter[C]. In: Proceedings-International Conference on Pattern Recognition, v 3, Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, 2004, 502-505.
  • 2Doucet A. On sequential simulation monte carlo sampling methods for bayesian filtering[J]. Statistics and Computing, 2000, 10(3):197-208.
  • 3Comanciu D, Visvanathan R, Meer P. Kernel-based object tracking[J].IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI), 2003,25(5) :564-575.
  • 4Huimin Chen. Joint target recognition and tracking using class specific features[J]. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers (IEEE Cat. No.04CH37592), 2004, 2(2):2101-2105.
  • 5Avidan, Shai. Ensemble tracking[C]. In: Proceedings-2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2005, 494-501.
  • 6Collins T R, Liu Y. On-line selection of discriminative tracking features[C]. In: Proceedings of the International Conference on Computer Vision (ICCV'03), France, 2003.
  • 7Stern H, Efros H. Adaptive color space switching for face tracking in multi-colored lighting environments[C]. In:Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition, 2002, 249-254.
  • 8Avidan, Shai. Support vector tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, August, 2004, 26(8) : 1064-1072.
  • 9Comaniciu D, Ramesh V, Meer P. Real-time tracking of nonrigid objects using mean shift[J]. IEEE Proc. On Computer Vision and Pattern Recognition, 2000,Ⅱ: 142-149.
  • 10Maenpaa T, Pietikainen M. (2005) Texture analysis with local binary patterns[C]. In: Chen CH & Wang PSP (eds) Handbook of Pattern Recognition and Computer Vision, 3rd ed[M]. World Scientific, 197-216.

同被引文献21

  • 1张波,田蔚风,金志华.Joint tracking algorithm using particle filter and mean shift with target model updating[J].Chinese Optics Letters,2006,4(10):569-572. 被引量:12
  • 2Yang G, Lin Y, Bhattacharya P. A Driver Fatigue Recognition Model Using Fusion of Multiple Features[C] //Proc. of IEEE International Conference on Systems, Man and Cybernetics. [S. l.] : IEEE Press, 2005: 1777-1784.
  • 3Fan Xiao, Yin Baocai, Sun Yanfeng. Multiscale Dynamic Features Based Driver Fatigue Detection[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(3): 575-589.
  • 4Lathauwer L D, Moor B D, Vandewall J. A Multilinear Singular Value Decomposition[J]. SIAM Journal of Matrix Analysis and Applications, 2000, 21(4): 1253-1278.
  • 5Vasilescu M, Terzopoulos D. Multilinear Image Analysis for Facial Recognition[C] //Proc. of International Conference on Pattern Recognition. Quebec City, Canada: [s. n.] , 2002: 447-460.
  • 6Gralewski L, Campbell N, Voak I P. Using a Tensor Framework for the Analysis of Facial Dynamics[C] //Proc. of the 7th International Conference on Automatic Face and Gesture Recognition. [S. l.] : IEEE Press, 2006: 217-222.
  • 7Papy J M, Lathauwer L D, Huffel S V. Exponential Data Fitting Using Multilinear Algebra: The Single-channel and Multi-channel Case[J]. Numerical Linear Algebra and Applications, 2005, 12(8): 809-826.
  • 8Anderson K, McOwan P W. A Real-time Automated System for the Recognition of Human Facial Expressions[J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, 2006, 36(1): 96-105.
  • 9Berthold K P, Schunck B G. Determining Optical Flow[J]. Artificial Intelligence, 1981, 17(1-3): 185-204.
  • 10王书朋,姬红兵.利用子区域特征进行自适应目标跟踪[J].系统工程与电子技术,2008,30(5):785-788. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部