期刊文献+

历史信息学习的相关反馈图像检索

Image Retrieval Using Relevance Feedback with Historical Information Learning
下载PDF
导出
摘要 相关反馈技术被有效的应用于基于内容的图像检索.传统的相关反馈未能充分利用检索的历史信息.为了进一步提高检索的效率与准确性,提出一种基于历史检索信息学习的相关反馈检索方法.该方法将每次检索的结果作为历史检索信息保存.进行新的检索时,判断当前查询图像与历史检索信息的语义相关性,预测检索结果,以期减少相关反馈次数.对包含8000幅图像的图像库实验表明,与传统相关反馈技术相比,该方法明显的改善了检索性能. The relevance feedback techniques are applied efficiently to the content-based image similarity retrieval (CBIR). How- ever ,the traditional relevance feedback techniques do not sufficiently utilize the historical retrieval information. In order to en- hance the image retrieval efficiency and precision further, a retrieval approach using the relevance feedback based on the historical retrieval information learning was presented in this paper. Every image retrieval result was saved as the historical retrieval information. When carrying out a new retrieval,decide the semantic similarity between the current query sample and the historical retrieval information,and predict the retrieval results, so as to reduce the interactive number of the relevance feedbacks. The performance of the approach was tested using an image database containing 8000 images. Results show the improved performance compared with the CBIR system with the traditional relevance feedback technique when using the same image similarity measure.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第7期1329-1332,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60772073)资助 河北省教育厅(图像语义分析及其在图像检索中的应用)(Z2006414)资助 河北省科技攻关指导计划(基于语义匹配的高效图像检索软件平台)(072135139)资助
关键词 基于内容的图像检索 图像语义 相关反馈 历史检索信息 content-based image retrieval image semantic relevance feedback historical retrieval information
  • 相关文献

参考文献2

二级参考文献23

  • 1[1]Rui Y, Huang TS, Mehrotra S. Content-Based image retrieval with relevance feedback in MARS. In: Proc. of the IEEE Int'l. Conf. on Image Processing. New York: IEEE Press, 1997. II815~818.
  • 2[2]Ishikawa Y, Subramanya R, Faloustos C. MinderReader: Query database through multiple examples. In: Gupta A, Shmueli O, Widom J, eds. Proc. of the 24th Int'l. Conf. on Very Large Data Bases. San Fransisco: Morgan Kaufmann Publishers, 1998. 218~227.
  • 3[3]Rui Y, Huang TS. A novel relevance feedback technique in image retrieval. In: Proc. of the 7th ACM Int'l. Conf. on Multimedia. Orland: ACM Press, 1999. 67~70.
  • 4[4]Yu CT, Luk WS, Cheung TY. A statistical model for relevance feedback in information retrieval. Journal of the ACM, 1976,23(2): 273~286.
  • 5[5]Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proc. of the 9th ACM Int'l. Multimedia Conf. Ottawa: ACM Press, 2001. 107~119.
  • 6[6]Bartolini I, Ciaccia P, Waas F. FeedbackBypass: A new approach to interactive similarity query processing. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proc. of the 27th Int'l. Conf. on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 201~210.
  • 7[7]Muller H, Muller W, Squire D. Learning feature weights from user behavior in content-based image retrieval. In: Proc. of the Int'l. Workshop on Multimedia Data Mining (MDM/KDD2000). Boston, 2000. 67~72. http://www.cs.ualberta.ca/~zaiane/mdm_kdd2000/ proceedings.html
  • 8[8]Kohrs A, Merialdo B. Improving collaborative filtering with multimedia indexing techniques to create user-adapting Web sites. In: Proc. of the 7th ACM Int'l. Conf. on Multimedia. Orland: ACM Press, 1999. 27~36.
  • 9[9]Goldberg D, Nichols D, Oki B, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 10[10]Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: Proc. of the 2nd ACM Conf. on Electronic Commerce (EC 2000). Minneapolis: ACM Press, 2000. 158~167.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部