期刊文献+

带启发性变异的粒子群优化算法 被引量:6

Novel particle swarm optimization with heuristic mutation
下载PDF
导出
摘要 粒子群优化算法(PSO)是一种群体智能计算方法,该算法精度高,收敛速度快,但在优化多峰函数的时候容易陷入早熟。加入启发性变异机制,可以在不破坏原算法高速收敛性质的同时,扩展算法的有效搜索区域。经过13个经典函数的测试证明,带启发性变异的粒子群优化算法(HMPSO)速度比原算法速度更快,精度更好,且不容易陷入局部最优。与其它带变异的粒子群优化算法相比,该算法收敛更快,在一些问题上有一定的精度优势。 Particle swarm optimization (PSO) is an algorithm of swarm intelligence, which performs well in function optimizing area, with its high precision and fast convergence. However, PSO may be premature sometimes, especially for multimodal functions. Combined with heuristic mutation, PSO can expand the algorithm's search place to avoid being trapped. By experiments based on 13 classic benchmarks function, it is proved that the heuristic mutation particle swarm optimization (HMPSO), which is seldom trapped, is faster and more precision than the standard one. Compared to other PSOs with mutation, HMPSO also converges faster, and gets some advantages.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第13期3402-3406,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(60573066) 广东省自然科学基金项目(5003346) 教育部留学回国人员科研启动基金项目(教外司留[2006]331号)
关键词 人工智能 群体智能 粒子群优化算法 启发性变异 函数优化 AI swarm intelligence particle swarm optimization heuristic mutation function optimization
  • 相关文献

参考文献17

  • 1Tu Zhenguo, Lu Yong. A robust stochastic genetic algorithm (StGA) for global numerical optimization[J]. IEEE Transactions on Evolutionary Computation, 2004,8(5):456-470.
  • 2Leandro N de Castro, Femando J Von Zuben. Learning and optimization using the clonal selection principle[J]. IEEE Transactions on Evolutionary Computation, 2002,6(3):239-251.
  • 3Wang Lipo, Li Sa, Tian F, et al. A noisy chaotic neural network for solving combinatorial optimization problems: Stochastic chaotic simulated annealing[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B, 2004,34(5):2119-2125.
  • 4Krzysztof Socha. ACO for continuous and mixed-variable optimization[C]. ANTS 2004, LNCS 3172, 2004: 25-36.
  • 5Shi Y, Eberhart R C. Fuzzy adaptive particle swarmoptimization [C]. Seoul, Korea: Proceedings of the Congress on Evolutionary Computation, 2001.
  • 6Daniel W Boeringer, Douglas H Wemer. Particle swarm optimization versus genetic algorithms for phased array synthesis[J]. IEEE Transactions on Antennas and Propagation, 2004,52 (3): 771-779.
  • 7Asanga Ratnaweera, Saman K Halgamuge, Harry C Watson. Self-oranizing hierarchical particle swarm optimizer with timevarying acceleration coefficients[J]. IEEE Trans On Evolutionary Computation, 2004,8(3):240-255.
  • 8Eberhart R C, Shi Y. Particle swarm optimization: developments, applications and resources [C]. Proceedings of the IEEE Congress on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 2001:81-86.
  • 9Bergh F, Engelbrecht A E Training product unit networks using cooperative particle swarm optimizers [C]. Washington: Proceedings of International Joint Conference on Neural Networks, 2001:126-131.
  • 10Hu Xiaohui, Shi Yuhui, Eberhart R. Recent advances in particle swarm[C]. Evolutionary Computation, 2004:90-97.

二级参考文献38

  • 1付国江,王少梅,刘舒燕,李宁.含速度变异算子的粒子群算法[J].华中科技大学学报(自然科学版),2005,33(8):48-50. 被引量:4
  • 2冯奇峰,李言.改进粒子群优化算法在工程优化问题中的应用研究[J].仪器仪表学报,2005,26(9):984-987. 被引量:25
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4Kennedy J,Eberhart R C.Particle Swarm Optimization[C].In:IEEE Service Center ed.IEEE International Conference on Neural Networks Ⅳ,Piscataway:IEEE Press,1995:1942 ~ 1948
  • 5Clerc M,Kennedy J.The Particle Swarm-Explosion,Stability,and Convergence in a Multidimensional Complex Space[J].IEEE Transaction on Evolutionary Computation,2002 ;6 (1):58~73
  • 6Mendes R,Kennedy J,José Neves.The Fully Informed Particle Swarm:Simpler,Maybe Better[J].IEEE Trans on Evolutionary Computation,2004; 8 (3):204~210
  • 7Eberhart R C,Shi Y.Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization[C].In:IEEE Service Center ed.Proceedings of the Congress on Evolutionary Computing,Piscataway:IEEE Press,2000:84~89
  • 8van den Bergh F,Engelbrecht A P.Training product unit networks using cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.
  • 9van den Bergh F,Engelbrecht A P.Effects of swarm size cooperative particle swarm optimizers[C]//Proc of the Third Genetic and Evolutionary Computation Conference,San Francisco,USA,2001.
  • 10Clerc M.Discrete particle swarm optimization illustrated by the traveling sales man problem[EB/OL].[2000].http://www.mauriceclerc,net.

共引文献478

同被引文献94

引证文献6

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部